
Client-Centered Software
Development

The CO-FOSS Approach

http://taylorandfrancis.com

Client-Centered Software
Development

The CO-FOSS Approach

Allen B. Tucker

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

⃝c 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-58384-9 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Rea-
sonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences
of their use. The authors and publishers have attempted to trace the copyright holders of
all material reproduced in this publication and apologize to copyright holders if permis-
sion to publish in this form has not been obtained. If any copyright material has not been
acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, re-
produced, transmitted, or utilized in any form by any electronic, mechanical, or other means,
now known or hereafter invented, including photocopying, microfilming, and recording, or in
any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Cen-
ter, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-
for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system
of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trade-
marks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Tucker, Allen B., author.
Title: Client-centered software development : the CO-FOSS approach /
Allen B. Tucker.
Description: Boca Raton, FL : CRC Press/Taylor & Francis Group, [2019]
| Includes index.
Identifiers: LCCN 2019010378| ISBN 9781138583849 (hardback : acid-free
paper) | ISBN 9780429506468 (ebook)
Subjects: LCSH: Application software--Development. | Computer software
industry--Customer services. | Consumer satisfaction.
Classification: LCC QA76.76.D47 T839 2019 | DDC 005.3--dc23
LC record available at https://lccn.loc.gov/2019010378

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com/
https://lccn.loc.gov/2019010378
http://www.taylorandfrancis.com
http://www.crcpress.com

To Meg,
my inspiration

and lifelong partner

http://taylorandfrancis.com

Contents

List of Figures xvii

List of Tables xxiii

Foreword xxv

Preface xxix

Acknowledgments xxxv

About the Author xxxvii

Chapter 1 ■ The Journey 1

1.1 SOFTWARE 1
1.2 SOFTWARE DEVELOPMENT MODELS 3

1.2.1 Serial Development 3

1.2.2 Agile Development 4

1.2.3 CO-FOSS Development 5

1.2.4 Software Customization: A Continuum 7

Custom Software 7

Off-the-Shelf Software 8

Custom Software with Off-the-Shelf Components 9

1.3 SOFTWARE LICENSING 9
1.3.1 Proprietary Licensing 9

1.3.2 Open Source Licensing 10

1.3.3 FOSS Origins and Impact 13

FOSS Worldwide 16

Terminology: OSS, FOSS, FLOSS, H/FOSS, and
CO-FOSS 18

vii

viii ■ Contents

1.4 SOFTWARE ARCHITECTURES 19
1.4.1 Software Frameworks 19

1.4.2 Web Servers and Bundles 21

1.5 NEW VS MATURE OPEN SOURCE PROJECTS 22
1.5.1 Maturity Assessment 23

1.5.2 Incubation 24

Community 25

Bug Tracking 27

1.6 INTO THE WEEDS 28
1.6.1 To the Instructor 29

1.6.2 To the Student 31

1.6.3 To the Client 32

1.6.4 To the Developer 33

1.7 SUMMARY 33
1.8 MILESTONE 1 34

Section I Organization Stage

Chapter 2 ■ Finding a Client and a Project 37

2.1 CLIENT ACTIVITIES AND SOFTWARE NEEDS 39
2.1.1 The Current Process and Existing Software 41

2.1.2 New Software to Fit a New Need 44

2.2 DOMAIN ANALYSIS 45
2.2.1 Requirements Gathering 48

2.2.2 User Stories 49

2.2.3 Use Cases 50

Unified Modeling Language 52

Writing an Effective Use Case 53

2.3 SOFTWARE DESIGN 55
2.3.1 System and Performance Requirements 55

2.3.2 Software Architecture 57

Layering, Cohesion, and Coupling 57

Domain Class Layer 61

Database Layer 61

User Interface Layer 63

2.3.3 Software Security 63

2.3.4 Encouraging Code Reuse 65

Contents ■ ix

2.4 THE DESIGN DOCUMENT 66
2.4.1 Overall Structure 67

2.4.2 Variations 68

2.5 THE SANDBOX 69
2.6 SUMMARY 70
2.7 MILESTONE 2 70

Chapter 3 ■ Defining the Course 71

3.1 SOFTWARE PROJECT ELEMENTS 71
3.1.1 Collaboration Tools 72

3.1.2 Development Platform 73

3.1.3 Project Hosting 74

3.1.4 The Version Control System 75

3.1.5 Sandbox and Live Versions 77

3.1.6 Reading, Writing, and Documenting Code 79

3.1.7 Unit Testing 82

Unit Testing Tools 84

3.1.8 User Help 85

3.2 THE COURSE 86
3.2.1 The Classroom 87

3.2.2 Team Formation and Dynamics 88

3.2.3 Scheduling and Milestones 90

3.2.4 Ensuring Progress 92

3.2.5 The Syllabus 93

3.2.6 Assignments and Grading 95

3.2.7 Alternatives: The Two-Semester Software Projects
Course 97

3.3 SUMMARY 98
3.4 MILESTONE 3 98

Section II Development Stage

Chapter 4 ■ Project Launch 101

4.1 THE TEAM 101
4.1.1 Team Dynamics 103

x ■ Contents

4.1.2 Asynchronous Communication 105

Aside: Mature FOSS Projects 106

4.1.3 Synchronous Communication 107

4.1.4 Shared Documents 108

4.2 THE DEVELOPMENT TOOLS 109
4.2.1 Programming Languages 109

JavaScript 110

Python 110

Java 111

Ruby 111

PHP 111

HTML and CSS 111

Other Languages 112

4.2.2 Software Platforms 112

The Apache/MySQL/PHP Server 113

Server-Side Java 114

Python 114

Ruby 114

4.2.3 IDEs for Development 114

Eclipse IDE 115

Python IDEs 116

Ruby IDEs 116

Java IDEs 116

Choosing and Installing an IDE 117

4.2.4 Working with the VCS 117

4.3 THE PRODUCT 122
4.3.1 Reading the Design Document 122

Identify Classes and Modules 124

Identify Instance Variables 124

Identify Methods and Functions 124

4.3.2 Reading the Code 126

Start from the Top 126

Look for Classes with Unique Keys 127

Avoid the Temptation to Edit the Code 128

4.3.3 Reading and Writing Code 129

4.3.4 Code Reuse 130

4.3.5 Licensing 131

Contents ■ xi

4.4 SUMMARY 132
4.5 MILESTONE 4 132

Chapter 5 ■ Domain Class Development 133

5.1 CODING THE DOMAIN CLASSES 134
5.1.1 Reusing External Legacy Code 134

5.1.2 Reusing Internal Legacy Code 136

5.1.3 Coding a Domain Class from Scratch 137

5.1.4 Adding Functionality: Constructor and Getters 138

5.2 SOFTWARE TESTING 139
5.2.1 Test Case Design 141

5.2.2 Unit Testing Frameworks 142

5.2.3 Unit Testing the Homeroom Domain Classes 146

5.2.4 Unit Testing the Homebase Domain Classes 147

5.2.5 Code Synchronization and Integration Testing 151

5.3 DEBUGGING AND REFACTORING 154
5.3.1 Debugging 154

5.3.2 Identifying Bad Smells 156

Aside: Using Software Metrics 158

5.3.3 Refactoring 159

5.4 CLIENT REVIEW AND ISSUE TRACKING 162
5.4.1 Client Review 162

5.4.2 Issue Tracking 163

5.5 SUMMARY 164
5.6 MILESTONE 5 165

Chapter 6 ■ Database Development 167

6.1 DATABASE PRINCIPLES 168
6.1.1 Relations and Tables 169

Table Naming Conventions 170

6.1.2 Queries 172

6.1.3 Normalization 173

6.1.4 Keys 175

6.1.5 Concurrency Control 176

xii ■ Contents

6.2 DATABASE ACCESS 177
6.2.1 Connecting the Program to the Database 178

6.2.2 Table Creation and Dropping 179

6.2.3 CRUD Functions 181

Create: Inserting Rows into a Table 182

Retrieving Rows from a Table 182

Update: Altering Rows in a Table 184

Delete: Removing Rows from a Table 185

6.2.4 Database Security 185

6.2.5 Database Integrity 187

6.2.6 Adding a Database Abstraction Layer 190

6.3 DATABASE TESTING 191
6.3.1 Testing the dbShifts.php Module 191

6.3.2 Testing the dbPersons.php Module 193

6.3.3 Testing the dbBookings.php Module 195

6.3.4 Testing the dbRooms.php Module 196

6.3.5 Integration Testing: Persons, Bookings, and
Rooms 197

6.4 CLIENT REVIEW AND ISSUE TRACKING 200
6.4.1 Client Review 200

6.4.2 Issue Tracking 201

6.5 SUMMARY 205
6.6 MILESTONE 6 205

Chapter 7 ■ User Interface Development 207

7.1 PRINCIPLES 208
7.1.1 Model-View-Controller Pattern 209

MVC Example 1: Editing a Shift in Homebase 211

MVC Example 2: Editing a Person in Homeroom 212

MVC Example 3: Editing a Stop in Homeplate 213

7.1.2 Linkages among MVC triples 214

7.1.3 User-Level Security 216

User Login and Password Encryption 216

User Access Levels 218

Enforcement of Access Levels 218

Contents ■ xiii

7.1.4 Protection against Outside Attacks 219

Avoiding SQL Injection Attacks 219

Avoiding Cross-Site Scripting Attacks 220

7.2 PRACTICE 221
7.2.1 Sessions, Query Strings, and Global Variables 221

7.2.2 Working with Scripts and HTML 223

Scripting Example 1: Editing a Shift 224

Scripting Example 2: Managing a Sub Call List 226

7.2.3 Reading Deeply 227

7.2.4 Using JavaScript and jQuery UI to Improve the
User Interface 231

7.2.5 Responsive User Interfaces 234

Responsive user interface design 236

7.3 TESTING, DEBUGGING, AND REFACTORING 238
7.3.1 Testing a User Interface 240

Organizing the Testing Process 243

7.3.2 Refactoring: Removing a Layering Violation 243

7.4 ADDING A NEW FEATURE: ALL LAYERS IMPACTED 246
Changing the Edit Person MVC Triple 247

Changing the Search for Persons MVC Triple 248

Changing the Schedule Person MVC Triple 249

Changing the Edit Shift MVC Triple 250

Changing the Sub Call List MVC Triple 251

7.5 CLIENT REVIEW AND ISSUE TRACKING 252
7.5.1 A User Interface Bug 253

7.5.2 A Multi-Layer Bug 256

7.6 SUMMARY 258
7.7 MILESTONE 7 259

Chapter 8 ■ Preparing to Deploy 261

8.1 TECHNICAL WRITING 261
8.1.1 Writing for an Audience 262

8.1.2 Standards for Writing Quality 264

8.2 USER DOCUMENTATION 267
8.2.1 User Manuals, FAQs, and Demo Versions 267

Example: Firefox User Manual 269

xiv ■ Contents

Example: OpenMRS FAQ and Demo 270

Example: Homebase Demo 270

8.2.2 On-Line Help 271

8.2.3 Example: Homebase On-Line Help 273

Context-Sensitive Help 273

Help Table of Contents and Navigation 274

Help System Architecture 275

8.3 OTHER USER SUPPORT 278
8.3.1 User Training 278

8.3.2 Feedback Surveys 279

8.3.3 Final Presentations 280

8.4 CLOSURE FOR STUDENTS 281
8.4.1 Self-Assessment 281

8.4.2 Leveraging the CO-FOSS Experience 281

8.5 SUMMARY 282
8.6 MILESTONE 8 282

Section III Deployment Stage

Chapter 9 ■ Continuing the Journey 287

9.1 TRANSITIONING TO PROFESSIONAL SUPPORT 287
9.1.1 The Hand-Off 288

9.1.2 Case Studies 289

Homebase Hand-Off and Support 289

RMHP-Homebase Hand-Off and Support 289

Homeroom Hand-Off and Support 290

Homeplate Hand-Off and Support 290

BMAC-Warehouse Hand-Off and Support 290

9.2 PROJECT EVALUATION AND CODE RELEASE 291
9.2.1 Potential New Clients 291

Volunteer and Resource Scheduling 291

Food Rescue and Redistribution 292

Agricultural Operations 293

9.2.2 Licensing Choices 293

9.2.3 Project Hosting Alternatives 294

GitHub 294

Contents ■ xv

GitLab 294

Bitbucket 295

SourceForge 295

9.2.4 Maturity Assessment 296

9.3 SOFTWARE MAINTENANCE AS A COMMUNITY ACTIVITY 298
9.3.1 Fixing Bugs: A Case Study 298

User-Developer Discussion 299

Debugging Activities 299

Developer-Developer Discussion 301

Closure 303

9.3.2 Software Maintenance: A Multi-Year Developer
Perspective 304

Homebase Maintenance: 2010-2018 304

Homeplate Maintenance: 2012-2018 305

Homeroom Maintenance: 2013-2018 306

BMAC-Warehouse Maintenance: 2015-2018 307

RMHP-Homebase Maintenance: 2015-2018 308

9.4 CREATING A FORUM 308
9.4.1 Example: Wordpress Support Forums 309

9.4.2 Example: Firefox Forums 311

9.4.3 An Example Forum Exchange 312

9.5 EVOLVING INTO A DEMOCRATIC MERITOCRACY 312
9.5.1 Incubation 313

9.5.2 Organization 314

9.5.3 Task-Specific Roles 316

9.5.4 Oversight 317

9.5.5 Decision Making and Conflict Resolution 318

9.5.6 Domain Constraints 319

9.5.7 FOSS Project Foundations 320

9.6 SUMMARY 320
9.7 MILESTONE 9 321
9.8 ENDING THE JOURNEY 321

BIBLIOGRAPHY 323

INDEX 327

http://taylorandfrancis.com

List of Figures

1 The Triad. xxxi

2 The Three Stages of CO-FOSS Development. xxxi

1.1 The serial (waterfall) software development model. 4

1.2 An agile software development cycle. 5

1.3 The CO-FOSS software development model. 6

1.4 Relationships among common FOSS licenses. 12

1.5 Stand-Alone Computing. 19

1.6 Client-Server Framework. 20

1.7 Cloud Computing Framework. 20

1.8 Life cycle of a bug, from Bugzilla documentation, p 9. 28

2.1 RMH guest referral form (prior to 2011). 46

2.2 RMH guest registration card (prior to 2011). 47

2.3 RMH guest room log (prior to 2011). 48

2.4 Homeroom use cases. 53

2.5 Layered Architecture (↔ denotes information flow and → de-
notes control flow). 58

2.6 Layered architecture of Homeroom. 59

2.7 Some of the initial domain classes for Homeroom. 61

2.8 dbRooms table structure in Homeroom database. 62

2.9 Room view screen draft for Homeroom. 64

2.10 Login Form for Restricting Homeroom Access. 64

3.1 The sandbox version: client-developer interaction. 78

3.2 Example code from Homeroom. 79

3.3 Output of the example code in Figure 3.2. 80

3.4 Inserting comments into the 2015 version of the Homebase
Shift class. 81

xvii

xviii ■ List of Figures

3.5 PHP documentation generated for the 2008 version of the
Homebase Shift class. 83

3.6 Some of the functions in the Shift class for unit testing. 84

3.7 Elements of a unit test for the Shift class. 85

3.8 Results of running the TestShift unit test. 86

3.9 Form for filling a vacancy on a shift. 87

3.10 Help screen for filling a vacancy. 88

3.11 Assignment 3 in the BMAC-Warehouse project. 96

4.1 Developing Homeroom with the Eclipse IDE. 116

4.2 The code synchronization problem. 119

4.3 Resolving the problem: Copy-modify-merge. 120

4.4 Git Menu Options (on right) from within an Eclipse IDE. 121

4.5 Documentation practice using indented blocks and control
structures. 130

4.6 Showing the open source license notice in the user interface. 131

4.7 Displaying the open source license notice in the source code. 131

5.1 Reusable Homebase Code in 2008. 136

5.2 Adapting the Code for Reuse in Homeroom in 2011. 137

5.3 Original Booking Class for Homeroom in 2011. 138

5.4 Revised Booking class for Homeroom in 2013. 139

5.5 Room class constructor and getters for Homeroom. 140

5.6 Test Suite in the Homeroom tests Directory. 143

5.7 Results of running a Test Suite. 143

5.8 A Unit Test for the Room Class in Homeroom. 144

5.9 Reporting a Unit Test Failure. 145

5.10 Setter Functions for the Room Class in Homeroom. 146

5.11 Partial unit test for the Booking Class in Homeroom. 148

5.12 The 2013 unit test for the Shift class. 149

5.13 The 2015 unit test for the Shift class. 150

5.14 New ApplicantScreening Class Added to Homebase in 2015. 151

5.15 New ApplicantScreening Unit Test added in 2015. 152

5.16 Interdependencies among Classes for Integration Testing. 153

5.17 A Recent GitHub Issue List for the Homeplate Project. 155

5.18 Example bad smell—duplicate code. 156

5.19 Example bad smell removal. 157

List of Figures ■ xix

5.20 Searching the code base for all references to the get_address
function. 160

6.1 A few rows in the dbDates table. 170

6.2 Homebase Shift class instance variables. 171

6.3 Attribute names and types in the dbShifts table. 172

6.4 The entries in the dbShifts table for August 6, 7, and 8, 2018
in Portland. 172

6.5 Connecting to the Homebase database. 179

6.6 Template for MySQLi table creation. 180

6.7 Creating the dbDates table in the Homebase database. 181

6.8 The phpMyAdmin tool for managing a MySQLi database. 181

6.9 Deleting a date from the dbDates table. 188

6.10 Retrieving a person from the dbPersons table in Homeroom. 189

6.11 A unit test for the dbShifts module. 192

6.12 Instance variables for the Person class in Homeroom. 193

6.13 A unit test for the dbPersons module. 194

6.14 Instance variables for the Booking class in Homeroom. 195

6.15 Portions of a unit test for the dbBookings.php module. 196

6.16 Instance variables for the Room class in Homeroom. 197

6.17 A unit test for the dbRooms.php module. 198

6.18 An integration test for dbPersons.php, dbBookings.php, and
dbRooms.php. 199

6.19 The first 6 issues posted for the 2015 Homebase project. 201

6.20 Simple framework for posting a new issue. 202

6.21 Form for posting a new issue on a GitHub project. 203

7.1 The Model-View-Controller pattern. 210

7.2 The Edit Shift view in Homebase. 211

7.3 The Person Edit view in Homeroom. 212

7.4 The Stop view in Homeplate. 213

7.5 The main menu views in (a) Homebase, (b) Homeroom, and
(c) Homeplate. 214

7.6 Part of the view and controller for the main menu MVC in
Homebase. 215

7.7 The View and Controller for the Homebase login form. 217

7.8 Ensuring security in Homebase using $_POST and $_SESSION

variables. 219

xx ■ List of Figures

7.9 Controlling navigation using $˙POST variables. 224

7.10 Excerpts from editShift.php view and controller module. 225

7.11 Underlying view and controller for managing a SubCallList. 227

7.12 Using the SubCallList form. 228

7.13 Code snippet for removing a person from a Shift. 230

7.14 Essential steps for deleting a Shift from the dbShifts table. 231

7.15 Essential steps for inserting a Shift into the dbShifts table. 232

7.16 Coding calendar date using HTML selects. 233

7.17 Coding calendar date using a jQuery UI datepicker widget. 234

7.18 A Responsive user interface. 235

7.19 The Homeplate Mobile home screen. 236

7.20 A responsive user interface view. 238

7.21 HTML code underlying part of the view in Figure 7.20. 239

7.22 The Calendar view inside Homebase Use Case 4. 241

7.23 Layering Violation: a user interface module directly querying
the database. 244

7.24 Layering Violation fixed and bad smell removed. 246

7.25 Showing a person’s status in the Edit Person view. 248

7.26 Coding to show a person’s status in the Edit Person view. 248

7.27 Updating a database entry with the new status field. 249

7.28 Searching for “applicant” status. 249

7.29 Search results for status = “applicant”. 250

7.30 searchPeople.php code for selecting a person’s type. 250

7.31 Listing only “active” volunteers when filling a vacancy. 251

7.32 Changing editMasterSchedule.php to list “active” volunteers. 251

7.33 Selecting only active volunteers for filling a calendar vacancy. 252

7.34 Code for selecting only active volunteers. 252

7.35 Issues 7-16 posted for the 2015 Homebase project. 254

7.36 Locating a bug in the calendar.php module. 255

7.37 The process_edit_notes function inside calendar.inc. 257

7.38 Locating a bug in the dbDates module. 258

8.1 First page of the Firefox user manual, including Help link. 269

8.2 The Introductory OpenMRS FAQ List. 270

8.3 The OpenMRS on-line demo. 271

8.4 The Homebase on-line demo. 272

8.5 Context-sensitive help for the search page. 273

List of Figures ■ xxi

8.6 The first two steps in the Searching for People help page. 274

8.7 Enlarged thumbnail in Step 2 of Searching for People. 274

8.8 The on-line help table of contents in Homebase. 275

8.9 Integrating help pages within the code base. 276

8.10 HTML code for Step 2 in the help file searchPersonHelp.inc.php. 277

9.1 Reproducing the bug. 300

9.2 Locating the defect. 300

9.3 Designing the fix. 301

9.4 Testing the fix: editing a person. 302

9.5 Points of access to the Wordpress forums. 310

9.6 Snapshot of the Installing Wordpress Forum. 310

9.7 Accessing the Firefox user forum. 311

9.8 Organizational levels in the Sahana project. 317

http://taylorandfrancis.com

List of Tables

2.1 Process a Referral. 54

2.2 Overall Structure of a Design Document. 67

3.1 A few PHPDoc Tags and their Meanings. 82

3.2 Example Course Syllabus Schedule: Spring 2015 Semester. 94

4.1 Overall Structure of the Homeroom Code Base. 127

6.1 Relations in SQL Queries. 173

6.2 Redesigning the dbShifts table to improve normalization. 175

6.3 Programming Language Database Extensions for SQL. 178

6.4 Common Attribute Types in MySQLi Tables. 180

7.1 CRUD Functions in the dbShifts module. 230

7.2 The three views in the Editing the Calendar use case. 240

7.3 MVC steps for adding a new feature. 247

8.1 Homebase User Questionnaire and Results. 279

8.2 Agenda for a Final Presentation. 280

xxiii

http://taylorandfrancis.com

Foreword

Client-Centered Software Development: The CO-FOSS Approach provides a
much needed guide and resource for undergraduate software development
or capstone courses that seek to engage students in a real-world software-
development project.

Such a course offers unique and daunting challenges. As someone who has
taught such a course intermittently over my 30+ year career, the goal was
always to give students a real sense of what software development is like. But
the challenges are many. How do you identify a project that can be done and
done well in a 14-week semester? How do you manage teams of undergraduate
CS majors, with different skill sets and motivations? What combination of
platforms and software tools can be used effectively under such constraints?
How do you evaluate student effort and contributions? What happens to the
“product” once the semester ends? These are just some of the issues.

In this book, Allen Tucker has laid out a well-tested and practical model for
addressing these challenges. The development approach is called CO-FOSS,
which stands for client-oriented software development using free and open
source software. The class project involves developing and deploying a soft-
ware product for an actual client, which is typically a local non-profit or-
ganization that needs mission critical software but cannot afford to hire a
professional software-development company. The software platform and tools
used in the project are all freely available and openly licensed. The book is full
of instructive examples that cover all of the parts and stages of a substantial
software-development project. It ends with a practical and innovative model
for supporting the student-built product after the semester has ended. This
is very important – many of the software-development projects one finds in
undergraduate courses end up sitting on shelves.

It’s great to see the evolution of the type of FOSS-development course
that this book describes. Ten years ago or so, I and other faculty tried to
organize such courses under the banner of the Humanitarian Free and Open
Source Software project (HFOSS). The idea then was to get students involved
with existing FOSS projects, particularly those that served “humanitarian”
purposes. The goal was to teach students about FOSS development – some-
thing that was not typically part of the CS curriculum at the time – by
getting them engaged as contributors to some real FOSS projects. We collab-
orated with the Sahana project (a disaster management system), OpenMRS (a
medical records system), GNOME (Linux-based accessibility software), TOR

xxv

xxvi ■ Foreword

(privacy-based browser software), the Mozilla project, and others. While we
had many successes, and while many students made significant contributions
to these projects, the logistics of managing collaboration with such projects
within a one-semester course proved difficult. The CO-FOSS model addresses
the challenges that the HFOSS approach faced in creative and practical ways.
This book shows that you really can get students involved in meaningful FOSS
development in a one-semester course.

The book is organized into three main parts. The Organization Stage sec-
tion is written primarily for the instructor and provides practical advice on
identifying a client and creating a plan for a doable software product that
would help that client, as well as constructing the syllabus for the course. A
key part of the syllabus is a carefully thought-out sequence of milestones that,
if followed, will lead to successful completion of the project.

The Development Stage section is written primarily for students and is
meant to be read and followed during the semester. It concisely covers all
of the main elements of software development with numerous practical ex-
amples: creating development teams, object-oriented design, database design,
user-interface design and development, software documentation, and support.
Among other things, this section has brief but authoritative discussions of:

• FOSS licensing

• The LAMP, MAMP, and WAMP server stack – i.e., Linux, Apache,
MySQL, and PHP

• Software hosting (e.g., GitHub) and issue tracking

• Communication software such as Skype and Slack

• Creating and using unit tests for all parts of the software

• Principles of Model-View-Controller design

• Effective debugging tools and strategies

• IDEs for various programming languages, including PHP, Python, Ruby,
and Java

• Database essentials, including normalization and CRUD functions

• Principles of software security

• Writing useful documentation and user-help features

Each of these topics is supported with helpful examples, including many
code snippets, taken from successful CO-FOSS projects that Allen and oth-
ers have conducted at various undergraduate institutions, including Bowdoin
College, Dickinson College, University of New Hampshire, Whitman College,
and others. Importantly, the projects created at these schools are hosted on

Foreword ■ xxvii

GitHub, and available to be used as models or even templates, depending on
the type of software product a client needs.

The Deployment Stage section describes how to transition the product
from the classroom to professional support so that the product can live on.
An important feature of this section is the role played by the Non-Profit
FOSS Institute (NPFI), an organization started by Allen that provides help
in identifying and supporting professionals who can realistically be expected
to host the software and manage its ongoing debugging and support. When
no such professionals can be found, NPFI shoulders some of these tasks itself.
This is an incredibly powerful resource, which has the potential to make all the
difference between a class project that dies once the class ends and a software
product that truly adds value to the client’s mission.

Some other important features of the book include:

• Milestones: Each of the nine chapters include a short list of milestones.
These serve both as a means of keeping the project on track, and also
as assignments that can serve as the basis for evaluating student work.

• Course organization: In addition to providing a template that can be
used to model the course syllabus, the book provides helpful ideas on
how to evaluate student work. Like other parts of the book, these have
the benefit of being based on courses that have tried and tested many
of the ideas in the book.

Designing and implementing a software-development course in an under-
graduate CS program can be intimidating. It exposes the instructor to risks
not found in other courses: Will he or she be able to manage the relationship
with the client? Will the students be able to create a quality piece of software,
and will they see it as an important education experience? Will the instructor
receive credit for taking such risks and going beyond the usual course expecta-
tions? On this last point, it is worth noting that more and more schools seem
to be encouraging “community involvement,” and many have set up centers
designed to serve as interfaces between town and gown. The model described
in this book would fit in well with such institutional initiatives.

This book provides a workable model that helps mitigate some of these
worries. The projects used as examples throughout the book serve as a proof
of concept for what can be done, and the book itself serves as a step-by-step
guide to getting it done. If you are considering an undergraduate software-
development course that teaches the principles of FOSS development, you
won’t go wrong by starting with this book.

Ralph Morelli
Professor of Computer Science (Emeritus)
Trinity College
Hartford, CT
April 20, 2019

http://taylorandfrancis.com

Preface

Software development is a complex and dynamic field. Its complexity appears
in many forms – the sheer variety of software clients and applications, the
rapid evolution of software development tools, the wide range of skills among
professional developers, the rapid evolution of computing platforms, and the
diversity of strategies used to develop the software itself.

This book is about one particular strategy for software development called
the “CO-FOSS approach.” The term CO-FOSS is short for “Client-Oriented
Free and Open Source Software.” A project using the CO-FOSS approach aims
to develop a customized software product for a single client, either from scratch
or (more likely) by reusing open source components from prior projects.1

The client for a CO-FOSS project is typically a non-profit humanitar-
ian, educational, or public service organization, such as a Ronald McDonald
House, a local school system, a Habitat ReStore, a food distribution organiza-
tion, or a senior center. The key here is that the client has a genuine need for
new software that will streamline a mission-critical operation, such as volun-
teer calendar scheduling, inventory management, donation tracking, or room
scheduling.

The CO-FOSS approach has been evolving since 2008. It has been used
in intermediate and capstone undergraduate computing courses where teams
of students learned the principles of software development while they gained
practical experience implementing a real-world software product. The key dis-
tinction for CO-FOSS in this setting is that the software product itself is real:
the students are developing it for a real client, so both the risks and the re-
wards are high in comparison with a more traditional software development
course with no real product.

Organizing such a course requires an unusual effort by the instructor. Be-
cause some of this effort may be unrewarded by typical institutional measures
for excellence in teaching, the instructor must view the benefits of taking this
“outside the box” approach as worthwhile. Additional support for making this

1The term “CO-FOSS” was coined in a 2014 study by MacKellar, Sabin, and Tucker [25],
which discusses the results of using this approach in courses at three different types of
institutions. The original idea of “client-oriented FOSS” was presented in a 2011 book by
Tucker, Morelli, and de Silva [43], where it was contrasted with the idea of “community-
oriented FOSS.” While both ideas engage students with FOSS development, the latter
creates a more generic product that is not customized for a single client.

xxix

xxx ■ Preface

extra effort may come from the instructor’s home institution or from various
outside sources such as the Non-Profit FOSS Institute.2

Our experiences with the CO-FOSS approach have yielded the following
benefits:

1. Undergraduate computing students are uniquely motivated by commu-
nity service experiences that are embedded within their formal academic
training. Uniformly, they report great satisfaction when using their com-
puting skills to develop software that serves the larger community (e.g.
the page https://npfi.org/student_evaluations/ shows the com-
plete student evaluations for the software development course taught at
Whitman College in 2015).

2. Client organizations benefit by receiving free customized software that
directly supports their mission-critical activities. For example, the
Ronald McDonald House in Providence, RI received volunteer database
and scheduling software called Homebase developed by a 5-student
team in that 2015 Whitman College course (see https://npfi.org/

projects/the-rmhp-homebase-project/). That software is still in use
today.

3. The fact that a CO-FOSS product is free and open source software allows
any of its source code to be reused and refitted to suit the needs of a fu-
ture project. For example, the Homebase software mentioned above was
adapted from an earlier version developed in 2013 by Bowdoin Col-
lege students for the Ronald McDonald House in Portland, ME. Thus, an
open source license like the GNU General Public License or the Mozilla
Public License is an essential element of the CO-FOSS approach.

4. Students gain experience learning about key elements of the software
development process, including coding, testing, refactoring, and writing
user documentation, as they would in a conventional software devel-
opment course. However, these students also gain practical experience
by working within a team, communicating with a client, using a client-
centered development model, sharing a code base, and reusing legacy
code – experience that prepares them well for entry into the modern
software industry.

This book aims to provide instructors, students, clients, and professional
software developers with a roadmap to guide them through the development
of a new CO-FOSS product from conceptualization to deployment. We use

2Throughout this book, any word or phrase that appears in typewriter font represents
a link to a Web page that provides more details. Of course, those links work only for the
e-book version. Readers using the print version should be able to locate most of these Web
pages by doing a Google search for that word or phrase.

https://npfi.org/student_evaluations/
https://npfi.org/projects/the-rmhp-homebase-project/
https://npfi.org/projects/the-rmhp-homebase-project/
https://npfi.org
https://npfi.org/projects/the-homebase-project/

Preface ■ xxxi

our own experiences with this approach to illustrate each step in the process,
detailing its technical elements, its methodologies, and its outcomes.3

The CO-FOSS approach views each project as having three connected el-
ements that form a triad, as pictured in Figure 1. The student team is one
element of the triad, the client is the second, and the professional developer
is the third. The goal of a triad is to design, implement and deploy a cus-
tomized software product that supports a specific mission-critical activity of
the client.4

FIGURE 1 The Triad.

The instructor is involved in all three ele-
ments of a CO-FOSS project. The instructor
organizes it, leads the student team through
project development, and delivers the completed
software product to the professional. The stu-
dents, who are intermediate-level computing ma-
jors, develop the software using both the require-
ments document and a client-centered approach.
The professional installs the completed software
on the client’s server, and then provides ongoing
support thereafter.5

The project has three stages: a 2-month or-
ganization stage, a 3-month development stage, and a 1-month deployment
stage, as shown in Figure 2.

FIGURE 2 The Three Stages of CO-FOSS Development.

So the instructor provides the glue that holds these three stages together, as
outlined below:

3All the examples in this book use the PHP/Javascript/MySQL/HTML platform, since
that is the platform on which our own CO-FOSS projects were built. So while instructors
may find the organizational aspects of this book to be useful, this book may be supplemented
by reference materials that uses a different platform, such as Django or Rails.

4Absent the student team, a CO-FOSS product can always be designed, implemented,
and deployed by a professional developer working directly with the client.

5Because the requirements and the design document are prepared during the organiza-
tion stage, the course itself should be properly labeled “software development” rather than
“software design.”

xxxii ■ Preface

1. During the organization stage, the instructor identifies the client’s
mission-critical software need, and then develops the requirements for a
software product that will fulfill that need. This includes eliciting an ini-
tial set of use cases from the client, developing an initial design document
and course syllabus that has an implementation timeline embedded, and
forming the student team.

2. During the development stage, the instructor, student team, and client
representative use a client-centered process to create a software product
that fulfills the requirements. That is, in a 1-semester course, the team
iteratively develops the product and refines the requirements, taking
into account the client’s feedback at each iteration.6

3. During the deployment stage, the instructor turns the product over to
the developer who installs the product on the client’s server (website).
Here, the developer and the client also collaborate to iron out any linger-
ing issues for the product and agree on a long-term support plan going
forward.7

To introduce the CO-FOSS approach, this book has an introductory chap-
ter followed by three Parts. The introductory chapter provides an overview of
software, open source licensing, and major software development methodolo-
gies. Everyone should read this chapter first and complete Milestone 1 at
the end of the chapter before continuing.

Each Part thereafter explores one of these three stages by sharing our
knowledge of designing, developing, and deploying a CO-FOSS product using
the triad as an organizational framework.

Part I is written mainly for the instructor and secondarily for the client.
It covers the details of finding a client and a CO-FOSS product to be de-
veloped, defining that product’s requirements, and organizing a course in
which students can develop the product. The instructor should complete
Milestones 2 and 3 before continuing to Part II.

Part II comprises the bulk of the book and is written mainly for the in-
structor and the students. It covers the principles and practice of client-
centered software development, with many examples from CO-FOSS
projects that our students have completed in recent years. The chapters

6We know of several CO-FOSS courses that spread the project’s development stage
over two semesters, either with the same group of students or with two different groups
of students. In one case, two different groups of students worked on the same project in
successive offerings of the same course. In another case, the same group of students worked
on the project over a unified 2-semester capstone “Software Projects” course. Both of these
approaches are viable when the institutional setting allows that flexibility.

7The recent rise of Web application hosting services, often called ‘‘platform as a

service" or PaaS, may reduce or eliminate the need for a professional developer to be
involved in the deployment stage. In this case, the instructor should be willing to maintain
the software after the project has been deployed.

Preface ■ xxxiii

in Part II should normally be taken in order, and each chapter’s own
Milestone should be completed before continuing to the next chapter.

Part III is written mainly for the instructor and the professional devel-
oper, providing guidance on deploying a new CO-FOSS product, sup-
porting it, and disseminating it to the larger open source community.
The last Milestone appears at the end of this chapter and its comple-
tion signals completion of the entire project.

The Table of Contents shows how the chapters are laid out in each of these
three Parts. Of course, the devil is in the details, so let’s get started!

http://taylorandfrancis.com

Acknowledgments

The CO-FOSS approach to software development is people-intensive. I am
fortunate to have worked with many extraordinary people who have con-
tributed to the CO-FOSS projects described in this book. I gratefully
acknowledge:

The student developers at Bowdoin and Whitman Colleges, for their will-
ingness to make the connection between academic work and community service
by completing these projects successfully: Adrienne Beebe, Hartley Brody,
James Cook, Johnny Coster, Moustafa El Badry, Felix Emiliano, Connor
Hargus, Jerrick Hoang, Richardo Hopkins, Noah Jensen, Phuong Le, Alex
Lucyk, Dylan Martin, Ruben Martinez, Nolan McNair, Jackson Moniaga, Je-
sus Navarro, Luis Munguia Orta, Maxwell Palmer, David Phipps, David Quen-
noz, Oliver Radwan, Sam Roberts, Luis Rojas, Taylor Talmage, Xun Wang,
Nicholas Wetzel, Ivy Xing, and Judy Yang.

The non-profit clients, for providing real-world settings in which the
software could be developed, customized, and deployed: The Blue Mountain
Action Council of Washington (Kathy Covey and Jeff Mathias); Ronald Mc-
Donald House Charities of Maine (Gabrielle Booth, Robin Chibroski, Geor-
gia Doucette, Whitney Linscott, Ashley MacMillan, Alicia Milne, Gretchen
Noonan, Karla Prouty, and Raymond Ruby); Ronald McDonald House Char-
ities of Rhode Island (Susan Czekalski, Michelle LePage, and Joanna Pow-
ers); and Second Helpings of South Carolina (Bruce Algar, Lili Coleman, and
Jon Peluso).

The professional developers, for supporting the software on the clients’
servers: Artopa LLC (David Tripp), Coursevector LLC, The Non-Profit
FOSS Institute, Pragmatics, Inc. (Dr. Long Nguyen), and Vivio Technologies,
Inc.

My faculty colleagues, for helping me understand the challenges of
teaching FOSS development as an academic and humanitarian enterprise:
Jim Bowring, Grant Braught, Janet Davis, Greg Hislop, Steve Huss-
Lederman, Bonnie MacKellar, Craig McEwen, Ralph Morelli, and Mihaela
Sabin.

The reviewers of this manuscript, for providing a wealth of conceptual and
detailed suggestions for improving it: Jim Bowring, Janet Davis, and Steve
Huss-Lederman.

xxxv

xxxvi ■ Acknowledgments

Dr. Jennifer Tucker, for helping me develop the idea of the Non-Profit
FOSS Institute, and then serving as its first Executive Director. And finally
my wife, Meg, for her lifelong commitment to education and humanitarian
volunteerism, and especially for introducing me to the first CO-FOSS client
at the Ronald McDonald House in Portland, ME in 2007.

Allen B. Tucker, February 2019

About the Author

Allen B. Tucker is the Anne T. and Robert M. Bass Professor Emeritus in
the Department of Computer Science at Bowdoin College. He held similar po-
sitions at Colgate and Georgetown Universities. He is currently a professional
software developer and President of the Non-Profit FOSS Institute (NPFI),
a 501(c)(3) organization that supports the development of free open source
software for non-profits by students and professionals.

Allen earned a BA in mathematics from Wesleyan University and an MS
and PhD in computer science from Northwestern University. He is the author
or coauthor of several books and articles in the areas of programming lan-
guages, software design, natural language processing, and computer science
education. He co-authored the 1986 Liberal Arts Model Curriculum in Com-
puter Science, served as Editor-in-Chief of the Handbook of Computer Science,
and co-authored the textbooks Programming Languages and Software Devel-
opment. He also served as Fulbright Lecturer at the Ternopil Academy of
National Economy in Ukraine, a visiting Erskine Lecturer at the University
of Canterbury in New Zealand, a Visiting Lecturer at ESIGELEC in France,
and a Visiting Professor at Whitman College.

Allen has been a member of NSF’s CISE Advisory Board, the Association
for Computing Machinery (ACM), the IEEE Computer Society, Computer
Professionals for Social Responsibility, and the Liberal Arts Computer Science
(LACS) Consortium. In 1991, he received the ACM Outstanding Contribution
Award and shared the IEEE Meritorious Service Award. He is also a Fellow
of the ACM and a recipient of the ACM SIGCSE Award for Outstanding
Contributions to Computer Science Education.

From 2008 to 2012, Allen served on the Advisory Board for the NSF
CPATH grant that supported Trinity, Wesleyan, and Connecticut College’s
Humanitarian Free and Open Source Software (HFOSS) initiative. That ex-
perience inspired him to begin engaging his own Bowdoin students in HFOSS
and developing a curricular model called CO-FOSS (client-oriented FOSS)
with his colleague Ralph Morelli at Trinity College.

From 2008 to 2015, he taught several software-development courses at
Bowdoin and Whitman Colleges using the CO-FOSS model with different
student teams. As a byproduct of this work, he developed strong working
relationships with non-profits such as the Ronald McDonald Houses in Maine
and Rhode Island, and food distribution organizations in South Carolina and
Washington.

xxxvii

xxxviii ■ About the Author

In 2013, with the belief that the CO-FOSS model would be viable in a large
number of undergraduate settings, Allen co-founded NPFI. NPFI’s mission is
to spread the development and deployment of open source CO-FOSS products,
teaching methods, grants, and other resources to other computing faculty, so
that they can engage their own students with real-world HFOSS development
for many more non-profit organizations in the future.

C H A P T E R 1

The Journey

“Change your opinions, keep your principles;
Change your leaves, keep intact your roots.”

—Victor Hugo

T his chapter provides an overview of software — its nature, its development
models, its licensing alternatives, its architectures, and its maturity. Thus

it offers a useful perspective within which the development of a new software
product can be viewed.

CO-FOSS is a model for developing new software. It is a particularly valu-
able model, both for learning about the software process and for developing
an actual software product for a real client. To provide a broader context,
Section 1.2 discusses three different software development models: the serial
model, the agile model, and the CO-FOSS model.

Fundamental to CO-FOSS development is the free and open source li-
cense that accompanies the software itself. Without such freedom, CO-FOSS
development would not be possible. This idea is discussed more carefully in
Section 1.3.

A key characteristic of any software product is its underlying architecture,
or organization. A coherent architecture is always an essential component of
all but the most simple software products. Section 1.4 introduces the client-
server family of software architectures that underly the organization of many
CO-FOSS products.

Different software products also vary in their maturity. The idea of CO-
FOSS applies mainly to the development of new software, often from pre-
existing components. However, most software is more mature, having evolved
through various levels of maturity over its lifespan. Section 1.5 looks at this
larger temporal context in which CO-FOSS development lies.

1.1 SOFTWARE
Simplistically, “software” can be viewed as all the programming in a computer
that is not hardware. But the very idea of “software” is a complex one. Even

1

2 ■ Client-Centered Software Development: The CO-FOSS Approach

the software on a single computer exists at two distinct levels – the operating
system/network level (think Linux, Windows, MacOS, or Apache Server) and
the application level (think Microsoft Office, OpenOffice, the Chrome browser,
or the Google Maps application).

Professional software developers have skills that reflect the level and type
of software that they develop. For example, Linux and network software de-
velopers work at the operating system/network level. Their skills allow them
to work with such tools and techniques as C programming and process syn-
chronization.

Other professional software developers work at the application level, such
as Web programming or database design, which requires a different set of
skills. The application level alone spans a wide range of distinct areas, each
of which has its own community of developers. Here’s just one taxonomy of
software application areas that appears in Wikipedia:

Information systems software supports corporate payroll, account-
ing, and inventory management, and individual word processing, spread-
sheet, and visual presentation needs.

Entertainment software includes video games, mobile games, and
social networks.

Educational software includes course management, survey manage-
ment, and language learning support.

Enterprise infrastructure software includes project management,
database systems, document management, and content managed web-
sites.

Simulation software simulates social networks, battlefield scenarios,
airline flight control, and vehicle driving control.

Media development software includes computer graphics and ani-
mation, graphic art, image galleries, audio and video editing, and digital
music generation.

Product engineering software includes compilers, interpreters, vir-
tual machines, computer aided design tools, integrated development en-
vironments (IDEs), version control systems (VCS), and debuggers.

How big is the software industry? The number of professionals in this
industry is large and growing. A recent study estimated that there were
21 million software developers worldwide in 2016. Of those, nearly 4 mil-
lion worked in the United States, and they comprised 2.5% of the total US
workforce. At the same time, demand for software professionals greatly
exceeds supply, creating a favorable job market for new developers who are
completing computer science, IT, and computer engineering degree programs.

https://en.wikipedia.org/wiki/Application_software
https://evansdata.com/reports/viewRelease.php?reportID=9
http://www.economicmodeling.com/2017/06/01/labor-market-supply-demand-software-developers

The Journey ■ 3

1.2 SOFTWARE DEVELOPMENT MODELS
Software is also complex in the sense that a software product can be developed
using different methodologies, or “development models.” On the one hand, it
can be developed serially, starting from a fixed set of requirements, proceeding
to a design specification, followed by writing the code and finally testing the
code. On the other hand, it can be developed from the “bottom up,” start-
ing with a small prototype and incrementally adding new requirements and
functionality with each iteration.

Additionally, some software can be developed as a generic product for a
large (real or imagined) market, while other software can be developed as
a customized product for a single client. The former approach is potentially
more profitable, while the latter approach is useful for an organization that
has unique software needs that are unmet by commercially-available software.

Finally, software can be developed from scratch (sometimes called a “green-
field” project), or it can be developed incrementally using pieces of code bor-
rowed from other software with similar features (a “brownfield project”).

This section briefly addresses three different software development models,
their constraints, and their tradeoffs.

1.2.1 Serial Development
The serial approach to developing software originated as the so-called “wa-
terfall model,” and it was the predominant approach to developing software
throughout the 1970s and 1980s. It is based on the assumption that a software
product’s functional requirements can be fully specified at the outset, and that
subsequent stages in the development process can be carried out more-or-less
serially. These stages are called “requirements analysis,” “design,” “coding,”
“testing,” and “delivery.”

Each stage in this process is viewed as a single discrete event. One stage
typically does not begin until the previous stage is completed. Typically, the
client is involved in the beginning and ending stages, but not in the crucial
middle stages. This is illustrated in Figure 1.1.

If the requirements can be fully specified at the outset, the serial model can
work. For example, an embedded software module that measures and reports
the altitude of an airplane in real time can be designed and implemented using
this model.

However, this serial approach to software development has had a poor
record of success in completing software products for customers. For example,
the 2015 Chaos Report [19] surveyed 50,000 software projects around the
world to learn how well they met the following three criteria:

1. completed on time,

2. completed on budget, and

3. completed with all features implemented.

4 ■ Client-Centered Software Development: The CO-FOSS Approach

FIGURE 1.1 The serial (waterfall) software development model.

The Chaos Report found that only 11% of all projects using the traditional
serial model met all three criteria, while 60% were “challenged” (that is, they
were completed but did not meet all three criteria), and the remaining 29%
failed (that is, they were never completed).

So in many situations, the serial development model does not work well. Its
main problem lies in the assumption that the requirements of a software prod-
uct can be fully specified at the outset, and that those requirements will not
vary throughout the development process. In reality, various outside factors
(such as changing user needs or the emergence of a new computing platform)
can alter the requirements. For example, the 2015 Chaos Report [19] confirmed
that not incorporating end users’ feedback throughout the development pro-
cess was a frequent cause for software project failure.

1.2.2 Agile Development
Since the 1990s, and in response to these problems, software development
methodologies have been gradually evolving away from the serial model. Newer
methodologies known as “rapid application development,” “dynamic systems
development,” “scrum,” “extreme programming,” and “feature-driven devel-
opment” have been shown to be more effective in settings where changing
user requirements or computing platforms had become the norm. These newer
methodologies all led to the 2001 publication of the Manifesto for Agile Soft-
ware Development [5], which crystallized them into a coherent statement of
principles and a development model.

In recent years, the agile model and its variants have yielded significant
improvements over the traditional serial model. For example, the same 2015
Chaos Report [19] found that 39% of all projects that used the agile model
met all three of the above criteria for success, while 52% were challenged and
only 9% failed.

The main reasons for its improved success rate are explained by the nature
of the agile process itself. In an agile project, the software product starts with

The Journey ■ 5

a minimal set of requirements and iterates several times through a 6-stage
development cycle, as pictured in Figure 1.2. The process is fluid, in the sense
that each cycle improves the requirements and develops new code in response
to client feedback from reviewing the results of the previous cycle.

FIGURE 1.2 An agile software development cycle.

Let’s look at some of the details in the agile cycle. In stage 1, the developers
Meet with the client and discuss the clientReview of the partially-completed
software from stage 6 of the previous cycle. In stage 2, the developers and client
assume new Tasks for making progress by adding new functionality and in-
corporating the client’s feedback from stage 1. Developers then independently
complete their respective Design, Code, and Test stages, thus preparing the
next version of the partially-completed software for client Review.

1.2.3 CO-FOSS Development
The CO-FOSS model for developing software is a hybrid of the serial and agile
models for software development. It borrows pieces from both, as summarized
in Figure 1.3.

To enable students to develop a useful piece of software for a single client
in one semester, the software Design is organized by the instructor and the
client before the semester begins, which is reminiscent of the serial model.
This activity is described in detail in Chapters 2 and 3.

Then the software Development is completed by students and the client
through a series of meet-task-code-test-review cycles. Each 1-2-week cycle is
repeated 5 or 6 times throughout the semester, each repetition achieving a
pre-determined milestone that ensures successful project completion.

6 ■ Client-Centered Software Development: The CO-FOSS Approach

FIGURE 1.3 The CO-FOSS software development model.

The Code stage relies on the fact that developers work with free and open
source software (FOSS). In the FOSS world, mature well-tested code can be
freely downloaded for reuse in any application with a similar functional need.
Thus, developers need to read and work with code written by others. Real
software is less often developed from scratch by a single individual. Instead,
it is usually developed incrementally by a team, each member adding and
refining parts of an existing “code base” written by others.

The Test stage in each iteration of the cycle provides a new opportunity
for debugging and refactoring the code base in preparation for client Review
and the next iteration.

Debugging means finding and correcting errors in the program. Bugs, or
instances of incorrect behavior, result from programming errors. Such
errors can often be notoriously difficult to find and correct, even when
working with a small code base. So as an aid to finding bugs we use an
aggressive strategy called “unit testing,” where individual units (classes
and modules) of code are individually tested at each repetition of a
CO-FOSS cycle.

Refactoring a program means reading the code, finding instances of poor
programming practice (from either a readability or an efficiency stand-
point), and reorganizing the code so that it performs the same functions
in a more readable and/or efficient way.

Coding, testing, debugging, and refactoring are discussed in detail in Chapters
5, 6, and 7.

Clients further test and evaluate the software during the Review stage of
each cycle. They play a key part in debugging, since they are the ones who
most often identify bugs and provide feedback to developers during each cycle,
ensuring that the final product meets their particular expectations. A more

The Journey ■ 7

careful treatment of the client review process and its close relationship to the
Test stage appears in Chapters 5, 6, and 7.

Finally, Deployment of the CO-FOSS product takes place at the end
of the semester, and is coordinated between the instructor, the client, and a
professional software developer. This is described in detail in Chapter 9.

1.2.4 Software Customization: A Continuum
A final consideration for software developers and clients involves the alter-
natives that are available in selecting/developing a software product to help
improve a particular mission-critical activity within the organization. These
choices form a continuum – from developing a completely customized soft-
ware product to obtaining a completely off-the-shelf product, with many other
choices in between. Let’s take a look at the trade-offs among three key choices
in this continuum:

Custom software,

Off-the-shelf software, and

Custom software with off-the-shelf components.

Custom Software

Custom software is just what its name suggests. The developer designs and im-
plements a unique piece of software that can improve a client’s mission-critical
activity. The software is tailored to match all that activity’s needs, processes,
and security requirements. Importantly, the client’s staff can assimilate that
software easily because it uses existing organizational vernacular that the staff
already knows.

Custom software may be open source or proprietary (see Section 1.3), but
the client must rely on the developer to keep it up to date with changing
organizational needs. So a strong working relationship between the developer
and client is essential for custom software to remain effective. Custom open
source software is ideally client-centered, allowing the client to be involved
continuously in the development process.

Custom software is not without its downsides. First, its original develop-
ment cost can be higher than the alternatives, if there are any. Second, asking
the developer to add new features as requirements change may also be bill-
able. Third, custom software has no peer user community outside the client’s
organization to provide advice on usability issues, though this downside is
somewhat mitigated by the developer’s ongoing availability.

All the software projects discussed in this book have developed custom
open source products. Each one is fitted to satisfy the requirements of a sin-
gle customer. For example, Homebase was originally developed in 2008 for the
Ronald McDonald House in Portland, ME. Enhancements were made by differ-
ent student teams in 2012 and 2013. A single developer returned in 2015 to add

8 ■ Client-Centered Software Development: The CO-FOSS Approach

more features to Homebase. These results would not have occurred if Home-
base were not open source and developed using a client-centered approach.

When weighing whether to use custom software, an organization should
be sure that there is no satisfactory off-the-shelf product available that can
satisfy its requirements at an affordable cost. It should also find a developer
that can produce that custom software and provide ongoing support, all at an
affordable cost. For example, all the software products discussed in this book
were developed and are supported at no cost to their clients. However, since
each of these products was developed using the CO-FOSS model, it did require
client participation (averaging about 2 person-hours per week) throughout its
development process.

Off-the-Shelf Software

Off-the-shelf software is a (proprietary or open source) product developed
for a large number of customers. Examples include Microsoft Word, Apache
OpenOffice, Google Sheets, and various smartphone- and tablet-based com-
puter games. Off-the-shelf software is aimed at addressing a specific shared
need of a mass market audience, such as the need to play a game of Sudoku
on a smartphone while waiting for an airplane.

The per-user cost of off-the-shelf software can vary greatly; some products
are free, others are costly, and still others are available as both free “intro-
ductory” versions and paid “full” versions. The full versions of off-the-shelf
software usually come with a preponderance of features, most of which are not
needed by the average user. These features are there in order to satisfy the
one-size-fits-all requirement. However, their presence can make the software
more difficult to learn and use.

Off-the-shelf software can be deployed quickly, usually with a simple down-
load and install step. Another advantage of popular off-the-shelf software
products is that they have large, often international, communities of users
and forums that provide self-help support. So the user doesn’t need to hire a
developer to fix a bug or customize the software to fulfill a specific need.

On the downside, off-the-shelf software typically will not match all of an
organization’s needs, either lacking needed features or providing superfluous
features. If customization is even possible, that typically comes at an addi-
tional cost. Routine upgrades may also come with additional costs.

Finally, off-the-shelf software can be obsolete or slow to evolve with the
industry to which it is targeted. Moreover, its vernacular is invariably out of
sync with the user organization’s vernacular, requiring users to assimilate a
new vocabulary before becoming comfortable with the software. Off-the-shelf
software may also require technologies that do not conform to the organiza-
tion’s current computing platform. Moreover, it often comes with the subtle
inability for an organization to change to a different vendor in the future when
a better alternative emerges (this is sometimes called “vendor lock-in”).

The Journey ■ 9

Custom Software with Off-the-Shelf Components

There is a middle ground between custom software and off-the-shelf software,
which is becoming an increasingly popular solution for organizations. The
idea of “custom software with off-the-shelf components” is that an organiza-
tion finds software that matches most of its specific needs but requires a few
additional functions in order to match the rest. Typically, this approach uses
open source software at its core, though some of the add-on components can
be proprietary as well.

A good example is Wordpress, which is free open source software out of the
box for building websites. A Wordpress website can be customized by adding
“plugins” which are modules that provide specialized functionality so that the
website can provide specific functionality that matches an organization’s pe-
culiar requirements. The Wordpress plugin library is huge, and it covers a wide
range of functionalities, such as membership management, on-line application
form processing, and on-line product catalogs for e-commerce.

The advantages of this approach to software development are mainly that
it leverages pre-existing libraries of reliable modules to help reduce up-front
costs, especially those associated with writing and testing new code. Other
advantages are derived from its basic open source nature: the organization
owns the software and its attendant database (avoiding vendor lock-in), the
software can be continuously updated to meet changing needs, and there are
no licensing fees.

The disadvantages of this approach are higher upfront costs vs. off-the-shelf
software and the requirement for an ongoing relationship with a developer to
make changes and upgrades (which may be billable). Like custom software,
this approach has no attendant user community to provide self-help (though
the relationship with the developer compensates for this).

1.3 SOFTWARE LICENSING
A software product can be licensed in one of two general ways, proprietary or
open source. The differences between these two types of licenses are significant,
especially in regard to the software development process and environment in
which the software is created and maintained.

1.3.1 Proprietary Licensing
Proprietary software is that which is licensed and sold as a binary executable
program to individual and corporate customers. The source code is the private
property of the developer and is kept hidden from the customer. A proprietary
software license typically limits the number of computers on which a user
can install the software – installing the software on more than one computer
costs more money. So a proprietary license prevents the user from copying the
software, modifying it, or sharing it freely with associates and friends.

https://wordpress.org

10 ■ Client-Centered Software Development: The CO-FOSS Approach

From the 1970s to the mid-1980s, nearly all software was developed and
sold with a proprietary license. Proprietary software is developed and main-
tained by an in-house programming staff of a large organization or by a vendor
targeting a specific market. All developers of a proprietary software product
must sign a non-disclosure agreement (known informally as an NDA) which
binds them to secrecy about the product’s source code and architecture.

For example, Word was developed by Microsoft’s own programmers to
meet the needs of the word processing market. Today it can be bought by
a single user either stand-alone (for $110) or as part of Microsoft’s “Office
365” bundle, a cloud-based subscription service that includes Word, Excel,
PowerPoint, OneNote, Outlook, Publisher, Access, OneDrive, and Skype (for
a $70 yearly subscription). The license for a single-user version of Word is a
30-page document “Microsoft Software License Terms,” which spells out that
the user has the right to install and use a single copy of the software on a single
computer, but cannot copy it to a second computer or pass it to a friend.

Google Docs is a proprietary word processor that runs on a web server and
is a free alternative to Microsoft Word. While Google Docs is less feature-rich
than Word, many users prefer that because of its intuitive functionality and
its interoperability with other aspects of cloud computing. Most importantly,
Google Docs’ cloud-based functionality supports smooth simultaneous editing
of a shared document by several persons. Microsoft’s cloud-based version of
Word, when it is bundled within Office 365, also supports this kind of collab-
oration.

1.3.2 Open Source Licensing
Free and open source software (FOSS) is software whose source code and
binary executable code are freely available for download by any individual
or organization. Most significantly, “freely” means that downloaders are free
to use the software on any computer, to modify the source code and binary,
and to share the modified software with associates and friends. Because of
this freedom, FOSS is accessible in markets where proprietary software has
no interest and little leverage—non-profit organizations, developing countries,
and individuals and businesses who are either unwilling or unable to pay the
cost of purchasing proprietary software.

Most proprietary software has a FOSS alternative. For example, a FOSS
alternative to Microsoft Word is called “Writer” and is part of the “OpenOf-
fice” bundle, maintained and distributed by the Apache Foundation. OpenOf-
fice allows any individual or organization to freely download and use it on any
number of computers. It runs on Windows, Linux, and Macintosh platforms.
OpenOffice is distributed under an open source license called the “Apache
License Version 2.0,” which describes the rights of clients to download and
freely use, copy, modify, and redistribute this software. The Android operat-
ing system also carries the Apache license [24].

The Journey ■ 11

Besides the Apache License, three slightly different types of licenses are
used for FOSS products:

The MIT License [27] was developed by the Open Source Initiative to
provide a totally unrestricted vehicle for reworking and redistributing
the source code.

The GNU General Public License [14], or GPL for short, was devel-
oped by the GNU Foundation to provide a vehicle for reworking and
redistributing the source code, but with the caveat that any redistribu-
tion must be GPL-licensed FOSS as well. This caveat effectively keeps
all derivatives of the product in the FOSS domain for other developers
to freely use and refine.

The Mozilla Public License, or MPL for short, was developed by the
Mozilla Foundation for its Firefox browser and is used by many other
software products today.

Many popular FOSS products (Linux and Wordpress, for example) are
licensed under the GPL, preventing them from ever being commercialized or
embedded inside a proprietary product. Version 2 of the GPL was released
in 1991. The GPL has been repeatedly upheld in courts around the world as
an enforceable license [2]. Since 1991, a variety of FOSS licenses have evolved
alongside the GPL to satisfy different needs within the open source commu-
nity. GPL version 3 (GPLv3) was released in 2007 to address a wide range of
issues, especially its compatibility with these other FOSS licenses.

Unlike the GPL, neither the Apache License nor the MIT license protects
a software product from having one of its derivative products converted into
a proprietary product and sold for profit. For example, Apple’s MacOS op-
erating system is proprietary software derived from the FOSS product BSD
Unix, which carries an MIT-like (permissive) license.

The LGPL and MPL represent a middle ground between the permissive
MIT license and the protective GPL license. That is, while they protect the
FOSS software and its derivatives from becoming fully proprietary, they allow
the software to be embedded in a larger proprietary product.

Today, there are dozens of different FOSS licenses. The Free Software Foun-
dation’s own list of other licenses cites rulings on which ones are compatible
with the GPL as well as guidance on how to define customized FOSS li-
censes [15]. The Open Source Institute maintains a similar list as part of its
effort to define open source software [27].

One of the most difficult questions for FOSS developers is how the vari-
ous licenses relate to each other. Figure 1.4 [44] provides an overview of the
more widely used licenses and their inter-relationships. Each box represents a
particular kind of license.

A license is more or less protective depending on how strongly it protects
the freedoms listed in the FOSS definition, particularly the freedom to re-
distribute derivatives of the software. The left-to-right arrangement of the

https://opensource.org/licenses/MPL-2.0
https://www.gnu.org/licenses/gpl.html
https://opensource.org/licenses/MIT

12 ■ Client-Centered Software Development: The CO-FOSS Approach

FIGURE 1.4 Relationships among common FOSS licenses.

licenses in Figure 1.4 shows how they progress from least to most protective
in this sense. Here are the main distinctions among the columns in Figure 1.4:

Permissive Software in the public domain is, strictly speaking, unlicensed
and therefore completely unprotected. Thus, someone can take a piece
of public domain software and re-distribute it under another open source
or proprietary license. The other three licenses in the permissive column
also allow derivative products to become proprietary. For example, soft-
ware with an Apache license can be turned into a proprietary product.

Weakly protective Weakly protective licenses are often used for source code
libraries or modules. They protect the software from becoming propri-
etary but allow it to be used as part of a larger proprietary package. The
Lesser General Public License (LGPL) and the Mozilla Public License
(MPL 2.0) are the most widely used licenses of this type.

Strongly protective Licenses in the strongly protective column in Figure 1.4
require that derivative works must also be licensed, as a whole, under the
GPL. This effectively prevents derivatives from becoming proprietary
software.

Network protective The Affero GPLv3 expands the reach of the GPL so
that users of a Web application can receive its source code. This also
applies to network-interactive software, including programs like game
servers.

The arrows in this figure represent compatibility, indicating where two
different FOSS-licensed products can be merged into one and share a common
license. To determine this sort of compatibility between two licenses, we trace
the arrows from the two products’ licenses in Figure 1.4 to a common license.
For example, two software products distributed under an Apache 2.0 license
and an MPL 2.0 license, respectively, can be combined into a new product
and distributed under a GPLv3 license.

The Journey ■ 13

Licensing a complex FOSS product is sometimes a complex matter. For
example, one of the most challenging issues Mozilla faced was to respect the
prior licensing of Firefox’s many embedded third-party modules. Agreements
with the owners of these modules had to be worked out so that their code
could be shipped either as open source or as binary code. The alternative
would be to remove these modules from the code base altogether.

Finally, we note that all software licenses, whether they be proprietary or
open source, carry some sort of warning notice that the software is provided
in “as-is” condition, thus attempting to free the developer from being sued
should the software cause harm or inconvenience to a client who downloads
and uses it. There are many exceptions to the force of this disclaimer, such as
a 2017 lawsuit (see https://npfi.org/iphone-lawsuit/) filed by iPhone
users against Apple for intentionally slowing their iPhone software as it got
older.

1.3.3 FOSS Origins and Impact
The free software movement was started in the early 1980s by Richard Stall-
man [38] and his colleagues. Stallman was a programmer at MIT’s Artificial
Intelligence lab and learned to program as part of the hacker culture that was
thriving in much of the programming community during the 1960s and 1970s.

Having grown frustrated with the directions that the proprietary software
industry was taking, Stallman started the GNU (read “GNU is Not Unix”)
project in 1983. This project was an effort to build an entirely free and open
operating system [36]. It is clear from Stallman’s original announcement about
GNU that his motivations were ethical and humanitarian [18]:

I consider that the golden rule requires that if I like a program
I must share it with other people who like it. I cannot in good
conscience sign a nondisclosure agreement or a software license
agreement. ... I’m looking for people for whom knowing they are
helping humanity is as important as money.

In 1985 Stallman founded the Free Software Foundation to help support
this new movement. He developed the definition of free software along with
the concept of copyleft, which uses software licensing to protect the freedom of
software users and developers to share their work [5]. Under a copyleft license,
free software guarantees users the freedom to:

1. Run the software for any purpose,

2. Study and modify the software (which requires access to the source
code),

3. Distribute copies of the software to help their neighbors, and/or

4. Improve the software and release those improvements to the public so
that the whole community benefits [5].

https://npfi.org/iphone-lawsuit/
https://www.usatoday.com/story/tech/talkingtech/2017/12/21/apple-sued-iphone-owners-over-software-slowed-older-phones/974846001/
https://www.fsf.org/

14 ■ Client-Centered Software Development: The CO-FOSS Approach

Notice that these four freedoms imply “open source” as well, especially con-
sidering items 2 and 4. So using the term free software as defined here is
equivalent to using the term free and open source software, or FOSS.

Despite the ambiguity of the English word “free,” Stallman’s definition
of free software has nothing to do with the price of the software; in his own
words, it means “free as in ‘free speech’ not as in ‘free beer.’” As a byproduct,
however, most software that is licensed under this definition is also distributed
free of charge.

In 1989, to help protect programs developed as part of the GNU project,
Stallman created the GNU General Public License [14]. The GPL is widely
regarded as the strongest copyleft license, since it requires that all derivative
works be made available under the four freedoms listed in the above definition
of copyleft licensing.

By 1991, Stallman and his collaborators had developed an entire UNIX-
based operating system, minus the kernel program. It was in this context
that Linus Torvalds, working with a broad international community of pro-
grammers, developed the Linux kernel program [3]. Linux became licensed
under the GPL and became the core of the GNU/Linux operating system [42].
GNU/Linux, or Linux as it is popularly called, is one of the best and most
widely known examples of FOSS.

Following the dramatic success of Linux, the Open Source Initiative (OSI)
was founded with the purpose of making the FOSS development process ac-
ceptable to the software industry itself [29]. In his formulation of the open
source definition Bruce Perens and other founders hewed closely to Stallman’s
principles, preserving the basic freedoms that Stallman articulated. Despite
this effort, for many the OSI provided a means to distance the movement
from what they saw as Stallman’s anti-business stance. As a result the OSI
has focused more on the practical benefits of the FOSS development model.

As open source gained popularity within the software industry, a schism
developed between free software and open source proponents. Perens eventu-
ally resigned from OSI [28], saying:

Most hackers know that Free Software and Open Source are just
two words for the same thing. Unfortunately, though, Open Source
has de-emphasized the importance of the [four] freedoms involved
in Free Software. It’s time for us to fix that. We must make it
clear to the world that those freedoms are still important, and
that software such as Linux would not be around without them.

However, despite the efforts of Perens and others to emphasize the moral
dimension, the gap between the two branches of FOSS continued to grow.
Stallman himself has continued to emphasize the moral motivation behind
the free software movement and has repeatedly emphasized the fact that it
is the commitment to software freedom, not the temporary practical advan-
tages, that make the FOSS movement viable [37]. In July 2009 Stallman was

The Journey ■ 15

still encouraging the FOSS community to place its emphasis on software free-
dom [39]:

As the advocates of open source draw new users into our com-
munity, we free software activists must work even more to bring
the issue of freedom to those new users’ attention. We have to say,
“It’s free software and it gives you freedom!” more and louder than
ever. Every time you say free software, rather than open source,
you help our campaign.

In recent years, the FOSS movement has been highly successful and has
grown to encompass a significant share of the software market. Two impor-
tant events came together to contribute to this success, the emergence of the
Red Hat business model and the transformation of the Netscape browser into
Mozilla Firefox.

The Red Hat Business Model Red Hat Corporation was the first to show
that FOSS development can be sustained by an effective business and
economic model [45]. In 1993, prior to Linux’s surge in popularity, Red
Hat’s founder, Robert Young, was running a software distribution com-
pany specializing in Unix applications. As sales of Linux distributions
began to pick up, he and Marc Ewing founded Red Hat Software, Inc.
in January 1995.

Red Hat’s business model is to work with Linux development teams from
around the world to put together the hundreds of modules that make
up a Linux (or, more accurately, a GNU/Linux) distribution. Rather
than selling a license for the software, as a proprietary software vendor
would do, Red Hat sells service. In the 1990s, selling service, rather
than branding the software as intellectual property and selling it, was a
revolutionary concept. The Red Hat model thus provides convenience,
quality, security, and service to its customers. By 2017, Red Hat Linux
had gained a 67% share of the Linux market [34].

Following in Red Hat’s footsteps, many other companies have discovered
that rather than owning a proprietary software product, a successful
business can be built around the concept of supporting and servicing a
FOSS product. This fact contradicts the programmers-need-to-eat skep-
ticism that had greeted the GNU Manifesto when it appeared in 19831.
That is, the GNU Manifesto defended open source as an idea that is
compatible with that of financial viability in the software industry, and
the Red Hat model independently verified that idea.

From Netscape to Firefox The creation of the Mozilla community was
another watershed event in the history of the open source movement.

1Stallman originally wrote the GNU Manifesto [36] to help gain financial support for the
development of the GNU operating system.

16 ■ Client-Centered Software Development: The CO-FOSS Approach

Unlike its successful FOSS predecessors (e.g., Linux and Apache) that
mainly benefit professional programmers, the Firefox browser became
the first FOSS product to be successfully distributed to all computer
users. Here’s how Firefox came into being.

In 1994, Netscape began providing unrestricted distributions of its Navi-
gator browser. In January 1998 Netscape announced that, in addition to
freely distributing its browser, it would also freely distribute the source
code for its browser software, known as Mozilla [20]. Thus, Netscape be-
came the first large corporation to open-source its proprietary software
in the interest of widening corporate development of open source envi-
ronments. This event forever changed the way software is distributed on
the Internet.

Mozilla’s current open source bowser, called Firefox, has become a major
combatant in the so-called “Browser Wars,” alongside Google’s Chrome,
Microsoft’s Internet Explorer, and Apple’s Safari. Of these, only Chrome
and Firefox are open source browsers and they combined to command
72% of the desktop browser market in 2017. The proprietary software
alternatives, Internet Explorer and Safari, command only 19% of the
same market [33].

Today, the Mozilla Foundation (mozilla.org), originally formed to man-
age the Mozilla development effort, has evolved to become a model open
source community. Mozilla has only about 300 paid employees. Another
1,500 or so volunteer programmers from a broad international commu-
nity contribute to its most recent software releases. In addition to pro-
grammers and developers, the Mozilla community includes tens of thou-
sands of testers and users, who work to promote the browser and have
helped to translate it into more than 70 languages worldwide (see [16]
for more details).

As Red Hat, Mozilla, and many other open source projects have demon-
strated, the FOSS development model is compatible with the idea of commer-
cial success in the software business. Today, many major software companies,
including IBM, Google, Hewlett-Packard, and others, support open source de-
velopment in various and substantial ways. Companies that rely on the success
of systems such as Linux and Apache assign members of their own software
development staffs to work, more or less full time, as contributors to these
projects.

FOSS Worldwide

At this writing, the FOSS movement has spread far beyond its origins in GNU,
Linux, and Mozilla. Many new FOSS communities have emerged to develop
important consumer-related software products. Because of its accessibility,
affordability, transparency, and association with freedom for the user, FOSS

http://mozilla.org

The Journey ■ 17

has become a major force in the software industry. Here are three notable
examples:

GIMP The GNU Image Manipulation Program (GIMP) provides a software
suite for photographic and other image manipulation. It is a free alter-
native to the proprietary Adobe Photoshop software.

OpenOffice OpenOffice is an office productivity suite that includes word
processing, spreadsheets, and presentation modules. As such, it is a free
alternative to the proprietary Microsoft Office software, which includes
Word, Excel, and PowerPoint.

Wordpress Wordpress is an open source platform for developing content
management systems (CMS) in websites. As of 2017, Wordpress had a
commanding lead in CMS market share over Drupal and Joomla, which
are also open source platforms.

Businesses, governments, academic institutions, and non-profit organiza-
tions throughout the world are increasingly turning to FOSS for their software
needs. Here are a few examples:

The 5th consecutive International Conference on Open Innovation 2.0
took place in Romania in June 2017. It is attended by innovation ex-
perts, policy-makers, academic scholars, practitioners and individuals
who are engaged in various aspects of open source development. The
2017 conference site has a strong IT and innovation ecosystem with 11
Universities and several innovation and technology parks [11].

The Brazilian government was one of the first to experiment with FOSS,
beginning shortly after the election of Luiz Inacio Lula da Silva in 2002.
Following Brazil’s leadership, the entire Latin American Region started
initiatives to promote FOSS usage and development, including many
grass roots efforts. In April of each year since 2005, free software festivals
are held in 200 cities and 18 Latin American countries [12].

The French Gendarmerie is reported to have saved an estimated 50
million Euros since 2004 in moving from Microsoft to the Ubuntu/Linux
desktop [22].

In 2009, the Amsterdam city government made OpenOffice and Firefox
their default systems on all its desktops [21].

Also in 2009, the United Kingdom government announced an effort to
avoid vendor lock-in by considering FOSS alternatives equally when de-
ciding IT procurements [7].

Throughout the last several years, U.S. government organizations have
made major commitments to FOSS, including the Library of Congress,

http://www.gimp.org
http://www.openoffice.org
https://wordpress.org/

18 ■ Client-Centered Software Development: The CO-FOSS Approach

the U.S. Postal Service, the U.S. Census Bureau, the Department of
Defense, the FBI, and many state governments (see [32] p. 182 and [30]).

In addition, some of the most dramatic FOSS progress has occurred in devel-
oping nations, where governments have seen FOSS as a way to save money,
avoid the vendor lock-in problem, and bridge the technology gap.

The emergence of FOSS is fueled by many forces, including the world’s
need for affordable computing, the effectiveness of agile and related software
development methodologies (see Section 1.2), and the increasing worldwide
sense of public ownership of the Internet and its resources. A 2015 survey
estimated that 78% of all companies were using open source software, up
from about 42% five years earlier [40]. According to that survey, the two
main reasons cited by companies for preferring open source over proprietary
software are:

1. Open source delivers better security than proprietary software.

2. Open source scales better and is easier to deploy than proprietary soft-
ware.2

Considering its current momentum, popularity, and openness to self-
forming development communities, the free and open source software move-
ment promises to remain a healthy and prominent part of the software industry
for the foreseeable future.

Terminology: OSS, FOSS, FLOSS, H/FOSS, and CO-FOSS

Overall, the terms OSS and FOSS cover the broad scope of open source soft-
ware. These two have somewhat different licensing variations, from more per-
missive (OSS) to less permissive (FOSS) restrictions on reuse. But three other
nearly-equivalent terms – FLOSS, H/FOSS, and CO-FOSS – have also come
into use. Let’s quickly sort them out.

FLOSS was coined in 2001 as an acronym for “free/libre and open-source
software” [13]. Proponents of this term point out that parts can be trans-
lated into other languages, for example the “F” representing free (English) or
frei (German), and the “L” representing libre (Spanish or French), livre (Por-
tuguese), or libero (Italian), and so on. So FLOSS is essentially equivalent
to FOSS.

A significant sub-concept within the FOSS umbrella is called “Humanitar-
ian FOSS” (H/FOSS for short), which is open source software designed for use
by global relief organizations, non-profit organizations, and society at large.

2In this book, you will explore some of the security challenges and solutions associated
with FOSS development. You will also gain hands-on experience with the complete process
of open source development and deployment. So in the end, your own experiences will enable
you to corroborate these two particular survey results.

The Journey ■ 19

Proprietary software developers largely ignore the particular needs of these
organizations, since they usually lack technology budgets. Excellent examples
of H/FOSS development can be found at http://hfoss.org/. [31].

CO-FOSS is that subset of H/FOSS in which the client is a single orga-
nization and the software is customized to fit the needs of that client [25].
Whether or not the software has broader uses beyond that single client is not
an immediate concern to a CO-FOSS project. In fact, any temptation to pre-
maturely broaden the reach of a CO-FOSS project beyond the specific needs
of its client tends to work against the goal of project success. This broadening
is sometimes called “mission creep.”

1.4 SOFTWARE ARCHITECTURES
Software is the code that resides in a computer and enables a person to use
it in a way that facilitates their work or enhances their lifestyle.

FIGURE 1.5 Stand-Alone

Computing.

The computer may be a laptop or desktop
device, a smartphone or tablet, or a server run-
ning a complex collection of applications for a
large organization.

1.4.1 Software Frameworks
Stand-alone computing is characterized by the
picture shown in Figure 1.5. That is, a single
computer runs the software for the user work-
ing in isolation from any outside services. An
example is a person preparing a document using
word processing software on a single computer
and then printing it on a printer directly con-
nected to that computer. No network services
are required to complete this task.

However, today’s computer users generally accomplish their computing
tasks by acquiring software services through an Internet connection, provided
either by a local wi-fi signal or by a cell tower. When computers connect
directly to software in this way, they are using a “client-server” framework,
as shown in Figure 1.6. Here, each application is split into a so-called ”client
side” and a “server side,” which interact with each other via the Internet. The
server side of an application usually includes interaction with an application-
dependent database, as suggested in Figure 1.6.

Examples of client-server computing include apps embedded within a Web
browser for purchasing goods at an on-line store or paying bills from a bank
account. The browser and the application client sit on the person’s computer
or smartphone. The on-line store or bank account’s server resides on the other
side of the connection. The person typically gains secure access to the full
application by providing a Username and a Password. SSL encryption is a

http://hfoss.org/

20 ■ Client-Centered Software Development: The CO-FOSS Approach

FIGURE 1.6 Client-Server Framework.

common tool for connecting the application’s client with its server, ensuring
that the information traveling on the Internet between the two remains secure.

When several clients can each connect to a network of remote servers hosted
on the Internet, this is called “cloud computing.” The metaphor here is that,
for a user, the individual servers providing different services are invisible, as
if obscured by a cloud. Thus, cloud computing is an extension of the notion
of client-server computing – it just adds more interrelated servers to the mix,
as shown in Figure 1.7.

FIGURE 1.7 Cloud Computing Framework.

An example of cloud computing occurs when a user connects to a collection
of related application servers through a single secure login. Once logged in, the

The Journey ■ 21

user can use several different services at once, such as Google Drive, Google
Contacts, GMail, Google Calendar, and Google Meet, while engaging in a
videoconference with co-workers and team members.

1.4.2 Web Servers and Bundles
A web server is the hardware-software configuration that provides web services
on the Internet. A bundle or stack includes the web server, a host operating
system, a database system, and one or more programming (scripting) lan-
guages. Each of the servers in Figures 1.6 and 1.7 depicts such a bundle. Two
popular web servers/bundles are the Apache Web Server and Microsoft IIS.

The Apache web server is currently the world’s most widely-used web
server (44% of all active sites in January 2018).[26] One of its bundles
is called the “LAMP stack” and it contains an Apache server, a MySQL
database, and PHP language scripts that run on a Linux operating sys-
tem. This is a popular combination for developing software embedded
in a web site, partially because it is open source and partially because
it runs equivalently on Windows (called WAMP) and MacOS (called
MAMP), in addition to Linux (LAMP).

Another Apache-based open source bundle is called AMPPS, which adds
Perl and Python to the above collection of programming tools for web
apps. AMPPS also runs equivalently on Windows, MacOS, and Linux
servers.[35] You can find more detailed information on the different
Apache bundling alternatives by visiting the Apache site itself.

The NGINX bundle, like Apache, is open source and runs on a variety
of platforms. However, NGINX also runs faster than Apache. These two
factors are mainly responsible for NGINX market share growing steadily
(21% of all active sites in January 2018), compared with Apache.[6]

Microsoft’s IIS web server has a smaller market share (7% of all active
sites in January 2018). Its application bundle includes the ASP .NET
scripting language and Microsoft’s MSSQL database. One reason for
its limited impact is that IIS is proprietary software and runs only on
Windows machines.

At another level is the more modern notion of a “web framework,” which
differs from a bundle because it hides from the programmer much of the
interface between the client, the server, and the database. Two prominent
web frameworks in use today are called “Django” and “Rails:”

Django is an open source web framework with the Python programming
language at its core.

Rails is an open source web framework based on the Ruby programming
language.

https://en.wikipedia.org/wiki/Django_(web_framework)
https://en.wikipedia.org/wiki/Ruby_on_Rails
https://httpd.apache.org/

22 ■ Client-Centered Software Development: The CO-FOSS Approach

Choosing from among the many bundles and frameworks available for
developing a new web-based CO-FOSS product is governed by several fac-
tors. Prominent factors include the nature of the application, the availabil-
ity of open source code for reuse in the new application, and the experi-
ence/preferences of the instructor and the student developers themselves.

To facilitate code reuse and to capitalize on prior student preparation,
all our CO-FOSS projects are client-server Web applications. They all use
an Apache web server bundle with PHP, JavaScript, and MySQL. So all the
examples in this book use this bundle. If we were to develop a new CO-
FOSS product with different code-reuse constraints, we would consider using
a different web framework such as Django or Rails. In this case, our students
would need a different book to supplement this one as a source of examples.

1.5 NEW VS MATURE OPEN SOURCE PROJECTS
While the project and course design discussed in this book can yield both
a functioning software product and a successful hands-on learning experience
for students, it is important to distinguish this experience from the experience
of contributing to a more mature FOSS product.

Mature FOSS products, such as Eclipse or Wordpress, are far more com-
plex, contain millions of lines of code, and are designed to serve many clients,
not just one. Such software is thus not customized (though pluggable architec-
ture encourages customization in a different way), and its development team
is larger and more fluid (team members come and leave) than the small team
that develops a new CO-FOSS product.

In a mature project, team members have different levels of membership,
depending on their prior experience and familiarity with the software itself.
Cockburn (e.g., [9], p. 9) equates the three levels of team participation—
novice, apprentice, and expert—with the three levels of mastery in Shuhari,
a Japanese martial art concept.3

Achieving a particular level of contribution—novice, apprentice, or
expert—is defined by a meritocracy, in which merit is measured by the qual-
ity and quantity of an individual’s prior contributions to the code base. What
constitutes merit can include any of the following:

• Code contributions

• Infrastructure support contributions

• Mentorship contributions

• Documentation contributions

• Testing and bug reports

3In Shuhari, “shu” means follow tradition, “ha” means break with tradition, and “ri”
means leave tradition behind. For more information, see https://en.wikipedia.org/wiki/

Shuhari/.

https://en.wikipedia.org/wiki/Shuhari/
https://en.wikipedia.org/wiki/Shuhari/
https://eclipse.org
https://wordpress.org

The Journey ■ 23

With this overview, we can see that students in a 1-semester software
projects course will likely gain little hands-on experience as developers by
engaging a mature FOSS software project as novices. That is, the complexity
of mastering that product to a level where they can become a code contributor
is far greater than what most students can expect to achieve in a 1-semester
course. Nevertheless, it is useful to explore these mature projects in a bit more
detail, so as to inform students interested in entering the software field about
the projects and professional communities they can expect to encounter.

1.5.1 Maturity Assessment
Models have been proposed for assessing the maturity of an open source
project.4 Maturity models provide clear quantifiable measures for evaluating
a project.

Several factors are considered when evaluating the maturity of an open
source project and its community. These include quality assurance, scalability,
security, performance, adoption, community strength, community governance,
support, and IT management.

A critical measure of an open source project’s maturity is the strength
of the community that surrounds its development. A strong community can
provide a wealth of input from around the world. In comparison, a proprietary
product can only benefit from the input of its employees.

A second measure of maturity evaluates the licensing terms and intellec-
tual property management policies and controls in the project. As we saw in
Section 1.3, several popular open source licenses have proven to be effective.

Finer-grained methodologies that can assess an open source software
project are defined in products like QSOS (Qualification and Selection of Open
Source Software) and OpenBRR (Open Business Readiness Rating, developed
by Carnegie Mellon University West and others).

A simpler way to make a quick judgment about the maturity of an open
source project is to ask whether each of its core developers has had at least
3 months experience on the project, the project has many more users than
developers, and the following actions have been taken:

• the source code is in a repository for public download,

• the project has a public forum where users can post bug reports and
queries about the system’s adaptability to new users, and

• the development team is open to taking on new members who may vol-
unteer.

This is different from a new CO-FOSS project, which has no immediate
intention of broadening either its client base or its developer team, but may

4In fact, maturity models are not new in the software engineering industry. The Capa-
bility Maturity Model Integration (CMMI) is one such example [1]. CMMI includes best
practices for planning, engineering, and managing product development and maintenance.

http://atosorigin.com
http://cmu.edu/silicon-valley/

24 ■ Client-Centered Software Development: The CO-FOSS Approach

become more mature in the future. That is, after project completion it may
be desirable to consider broadening the developer team or reaching out to
other clients who have needs for a similar product. An example of this type of
project is the FarmData project, which was originally developed by students
at Dickinson College for a single client but is now more mature and has a
larger user and developer community.

A newly-completed CO-FOSS project that promises to have broader im-
pact may transition to a more mature phase which has been called the demo-
cratic meritocracy phase. Democratic meritocracy is an ideal form of gover-
nance for a young FOSS project, in the sense that all the project’s partici-
pants are representatives from the meritocracy of contributors. Typically, the
sponsors of these types of projects are non-profit foundations whose boards
of directors are also selected by the membership. An excellent example of a
democratic meritocracy is the Debian community, which has now grown to
include thousands of voluntary developers and a very representative process
of voting and selecting project leaders.

In the next section, we discuss the long-term transition of a young CO-
FOSS project into a more mature project. We will return to that discussion
in Chapter 9, which considers the initial steps for making that transition after
the project has been completed.

1.5.2 Incubation
The formation of a vibrant community of users and developers marks a critical
stage in a CO-FOSS project’s transition from origination to maturity. This
stage is sometimes called incubation, and its purpose is to establish a self-
sustaining open-source project with a long lifespan. Both the Eclipse Founda-
tion and the Apache Software Foundation have created incubators that invite
young open source projects to join.

Two key activities govern how successfully an open source project can
pass through its incubation phase and become healthy and sustainable for
the long run: building a vibrant community and establishing a viable bug
tracking process. At its beginning, a project has only a single (lead) developer,
a sponsoring client, and a single user. As the code base evolves, a core group
of developers can emerge alongside a handful of “bleeding edge” new users.

How can a CO-FOSS project transform its fragile community into one that
has a significant number of developers and users, who are actively reporting
issues, and whose developers are contributing bug fixes and new features as
the product evolves? Three inter-related groups are vital to this transition:
users, contributors, and committers.

Users know and use the software actively. They provide feedback to devel-
opers (contributors and committers) when they find bugs or other dif-
ficulties when using the software. They also suggest new features that
could improve the software’s usability or applicability.

https://sourceforge.net/projects/farmdata/

The Journey ■ 25

Contributors are users who also contribute bug fixes and minor features
to the software, but don’t have the right to alter the code base itself.
Contributions can also be in the form of documentation, administrative
support, and testing.

Committers are developers who review contributions and install them in
the code base. In this activity, the committer ensures that the code base
keeps its integrity—i.e., that the new features are correctly implemented
and that the bugs are actually fixed.

Attracting new contributors and committers to the project requires active
recruiting, not just passive “openness” for outsiders to join. For example, a
certain amount of professional and social networking must be directly associ-
ated with the project. The lead developers especially must make reasonable
efforts to recruit promising new contributors.

An active Web presence, including easily accessible developer and user
forums and project wiki, are valuable catalysts that encourage the success-
ful incubation of a new FOSS project. The establishment of effective on-line
forums allows developers and users to discuss specific issues related to the
usability of the software itself.

These forums provide an immediate avenue of expression through which a
user can report a bug or other technical issue related to using the software.
They also provide timely information to developers about the status of all
active bugs and other new features that are being considered for the next
release of the software.

Finally, these forums provide documentary evidence that can be used when
a contributor applies “promotion” to committer status. That person’s contri-
butions can be retrieved from the forum’s discussion threads and then used
by project leaders to evaluate that application.

Community

Abstractly, Jensen [23] characterizes FOSS project organization as a socio-
technical interaction network, or STIN for short. STINs are always in flux;
they are self-organizing networks of activities, people, and tools, and often all
these parts are geographically distributed around the world.

More concretely, mature FOSS projects tend to have three main organiza-
tional distinctions from proprietary projects. These are:

1. Self-organizing Mature FOSS projects allow participants to find their
own level and project activity with which to become engaged, based on
their interests and skills. Proprietary project leaders assign each partic-
ipant to a project activity.

2. Egalitarian Mature FOSS projects openly invite contributions from
everyone. Proprietary projects are hierarchically organized and closed
in this regard.

26 ■ Client-Centered Software Development: The CO-FOSS Approach

3. Meritocratic Mature FOSS projects organize their work around public
discussions, and decisions about future directions are based on merit.
Proprietary projects organize around the results of private discussions
among project leaders, and decisions about future directions are highly
influenced by cost and profit.

A FOSS community itself is quite fluid—most users of the software are, in
fact, passive users. Jensen [23] (rather harshly) calls these users “free-riders,”
since they give nothing back in return for the privilege of using the software
at no cost.

Users who do provide feedback to the developers do so in an entirely vol-
untary spirit. Feedback typically occurs through the software’s user forum,
which is prominently accessible at the project’s Web site. Some users may
go a step further by providing bug fixes or suggestions for new features in
the form of code patches. Engaging in this activity self-promotes the user to
contributor status. Whether or not a contributor’s suggestions are accepted
and become part of the code base, however, is decided by a committer.

Promotion to committer status is done on the merits of a person’s collected
contributions to the project over time. In this sense, the contributions become
a portfolio of work that can be evaluated to assess the merits of that person’s
case for assuming the responsibilities of a committer. Who decides on the
promotion of a contributor to committer status? This is often done by a core
project leadership group. In Apache, for example, the Project Management
Committee (PMC for short), is the group of committers that oversees the
project’s organization, including making promotions.

While users and contributors are most likely volunteers, many committers
become paid employees of the project. What particular skills are required
to attain committer status? Generally, an applicant’s portfolio contains two
types of contributions: those that illustrate technical competence and those
that exhibit social skills.

Finally, research [23] has shown that successful FOSS projects must main-
tain a critical mass of contributors and committers, in relation to “free-riding”
users, in order to remain vibrant over the long run. Too many free-riders can
kill the project.

Policy, procedural, and technical decision-making in an open source project
aims to be fully transparent to all community members. When a complex
policy, procedural, or technical issue arises, a member of the PMC typically
posts the issue on a public discussion forum, where it is debated and either
ratified or rejected by consensus or majority vote. Here, consensus means
that at least two other developers support a particular solution and no other
developers post strong disagreements.

Sometimes, of course, achieving consensus on a contentious issue is not pos-
sible. Often conflicts arise during discussions about community infrastructure,
technical direction, expectations about developer roles, or interrelationships
among roles. These kinds of conflicts can be resolved by a process involving a
small PMC made up of prominent members of the community. This group has

The Journey ■ 27

the job of ensuring fairness throughout the community by solving persistent
disputes.

In addition to maintaining the code base, the participants in a mature
FOSS project play roles that accomplish several other important project tasks.
Here is a summary of these roles and their respective activities:

The project leader maintains the project’s release plan and current
status, and moderates the developer forum.

The expert user maintains the software’s actors, use cases, require-
ments, and user roles.

The lead developer maintains the software architecture.

Other developers maintain the user interface design, domain classes,
database design, code base, unit test suite, build package, and build
schedule.

Testers manage bug reports and the user forum.

Writers maintain on-line help text.

Bug Marshalls oversee opened bugs and pass them on to developers.

Release Managers overlook the packaging and releasing of new ver-
sions of the software for general public download and use.

We also note that it is not unusual for an individual to play two or more of
these roles simultaneously, depending on his/her particular interests and the
size of the developer and user community.

Bug Tracking

As the code base becomes complex and its community grows, an open source
software project should establish a viable process for identifying and tracking
the status of bugs that are reported by users and developers. Bug tracking is
an important process, especially in a development culture where Linus’ Law,
“given enough eyeballs, all bugs are shallow,” is held in such high esteem.

Bug tracking is a formalized process that governs how bugs are identified
and how their resolution is managed by the developers who work with the code
base. A particularly interesting bug tracking process is the one established by
the Mozilla Foundation, based on its open source bug-management tool called
Bugzilla.

The “life cycle of a bug” refers to a bug’s progress through a series of
discrete states. Such a life cycle can be described in the form of a state dia-
gram, as shown in Figure 1.8 for Bugzilla. There, we see that a bug can be in
any of five states: “unconfirmed,” “confirmed,” “in progress,” “resolved,” and
“verified.” A bug can be introduced by any user. The management of a bug

28 ■ Client-Centered Software Development: The CO-FOSS Approach

FIGURE 1.8 Life cycle of a bug, from Bugzilla documentation, p 9.

is done by developers with commit privileges, and the whole process can be
quite complex.

For example, the Eclipse community uses Bugzilla (see https://npfi.

org/bugzilla/). A quick look at the Bugzilla User Guide shows that the
process of bug management is not trivial. The process works only if the project
has both an active user community for detecting and reporting bugs, and an
active developer/committer community for fixing, resolving, and verifying the
fixes.

For projects with large user and developer communities, this summary
provides insight into how to implement Linus’ Law in a practical setting. It
also shows that the process of fixing a bug and verifying that fix relies strongly
on both the openness of the source code and the atmosphere of trust that exists
among users and developers.

1.6 INTO THE WEEDS
This section provides guidance on how to best navigate the rest of this book,
depending on whether you are an instructor, a student, a client, or a profes-
sional software developer.

https://npfi.org/bugzilla/
https://npfi.org/bugzilla/
https://bugzilla.readthedocs.io/en/5.0/using/index.html
https://bugs.eclipse.org/bugs/

The Journey ■ 29

1.6.1 To the Instructor
You are about to organize a software development course that has ambitious
goals and outcomes for your students.

As in a traditional course, you can expect that your students will learn ba-
sic principles of software development, including the stages in the development
cycle – requirements, design, coding, testing, deployment, and maintenance.
You can also expect that they will master the steps in a client-centered de-
velopment cycle – meet, plan, code, test, and evaluate – as they develop their
CO-FOSS product with the help of a real client.

Two key ideas will help ensure the success of your course: 1) the idea of
open source software and 2) the idea of client-centered development. An im-
portant goal of your course is to convince students that software development
can be a successful and productive enterprise, and that each one of them can
play an essential role to achieve that success.

To accomplish this goal, you will need to introduce students to specific
software tools to facilitate their work – a system stack, a “sandbox server,” an
integrated development environment (IDE), a software repository with ver-
sion control, unit testing, face-to-face collaboration, and open source licenses.
Working as a team, you, your students, and your client will be engaging in a
client-centered process that will help ensure successful project completion at
the end of the course.

For the projects discussed in this book, our students used a system stack
with an Apache server, MySQL, PHP, and JavaScript running on Linux,
Mac OSX and Windows machines. In one project, students also used An-
droid development tools to develop an app for an Android tablet using
Java. They used Mercurial version control with Google Code repositories.
Because Google Code is no longer supported, these projects have migrated
over to GitHub repositories and they use the Git version control system. For
a peek at the current versions of these projects and their code bases, see
https://github.com/megandalster/.

For coding, testing, and committing code to the repositories, our students
used an Eclipse IDE with either PHP/JavaScript or the Android Java pro-
gramming language. For unit testing their PHP code, they used SimpleTest.
At this time, however, PHPUnit would be the preferred unit testing tool,
and Android Studio would be the preferred IDE for developing an Android
Java project.

The tools you select for your project will depend upon several factors:
your own experience, your client, your application, other open source code
bases that you can reuse, and your students’ skills coming into the course.
In our experience, students were intermediate or advanced CS majors, with
moderate-to-excellent programming skills, Java or Python language skills,
modest IDE experience, and data structures familiarity. They had little or
no prior experience with large software projects, databases, version control,
or team programming.

https://github.com/megandalster/

30 ■ Client-Centered Software Development: The CO-FOSS Approach

Finding a client and a software project that you and your students can
complete in this course requires particular care and attention. While this work
goes beyond an instructor’s normal teaching load, it is key to successfully
organizing and teaching the software development course in this way.5 For
more detailed guidance on finding a client and a project, see Chapter 2.

It is no accident that the 3-month project implementation stage is the
length of a 1-semester course. This requires that you design the software
project carefully so that your students can complete it by the end of the
course. We think that student success in this regard is the most important
outcome. Failure to complete the project would not only be a disservice to
the client; it would also leave your students with a negative view of software
development as a profession. For more detailed guidance on organizing your
project and your course around it, see Chapter 3.

To support your teaching the course itself, this book provides detailed
guidance on the development process, including links to code bases, “sandbox”
databases, assignments, and mini-lectures drawn from our own experiences.
In particular:

Chapter 4 introduces students to the fundamentals of the client-
centered process, open source licensing, team roles, using the
code repository, and communicating with team members.

Chapter 5 covers principles of programming languages, IDEs,
and coding the domain classes. It also introduces the idea
of test case design, unit testing, code synchronization with a
“sandbox” server, issue tracking, and client review.

Chapter 6 covers the principles and practice of database design,
tables, queries, CRUD functions, testing, security, and client
review.

Chapter 7 introduces design and development of the user inter-
face, including the model-view-controller pattern, usability
testing, and client review.

Chapter 8 offers suggestions that will help your students finalize
their project and prepare the software for productive use.
We offer advice about technical writing, user documentation,
developer documentation, and user training.

Chapter 9 addresses issues that you will confront after the semester is
finished. It discusses finalizing your project’s public repository with the key
artifacts that your students have developed – code base, issue tracking, Wiki
pages, “sandbox” database, requirements document, and developer documen-
tation. They also provide guidance on finding a developer and passing these
artifacts to that developer for deployment and ongoing support.

5Because this preparation normally takes up to 2 months prior to the beginning of
the course, you may want to seek outside support, either as release time from your home
institution or as a grant from an outside source like NPFI.

The Journey ■ 31

1.6.2 To the Student
You are about to begin a course where you will learn the modern principles
and practices of software development. As a central activity in this course,
you will help create a real software product that fulfills an important need for
a real client. (You may view this as a service learning opportunity embedded
within a regular academic course.)

Your success in this course will be determined by many factors, including
the quality of your contributions to the software itself (programming, testing,
and documentation) and your contributions to the team effort (sharing code
and collaborating).

In this course you can expect to use what you have learned about program-
ming and data structures in earlier courses. But you can also expect to gain
new understanding about the principles and practice of software development,
including the following:

Chapter 4 introduces you to the fundamentals of the client-
centered process, open source licensing, team roles, using the
code repository, and communicating with team members.

Chapter 5 covers principles of programming languages, IDEs,
and coding the domain classes. It also introduces the idea
of test case design, unit testing, code synchronization with a
“sandbox” server, issue tracking, and client review.

Chapter 6 covers the principles and practices of database design,
tables, queries, CRUD functions, testing, security, and client
review.

Chapter 7 introduces design and development of the user in-
terface, including the model-view-controller pattern usability
testing, and client review.

Chapter 8 offers suggestions that will help you finalize your
project and prepare the software for productive use. We offer
advice about technical writing, user documentation, devel-
oper documentation, and user training.

Unlike other courses, this one is driven by three major elements:

1. teamwork

2. a real-world software product

3. self-education

First, you will work with a team to develop a new software product. The team
will include a few other classmates, your instructor as “benign dictator,” and
a client as the evaluator and recipient of your completed software. So you will
learn to work with a team and communicate with teammates and the client
as your project develops.

32 ■ Client-Centered Software Development: The CO-FOSS Approach

Second, the software product you will be developing is real; you may com-
plete it by completing a series of assignments (called “milestones”) with your
teammates. Your team will be working with a real client who expects to re-
ceive a viable product at the end of the semester. Rather than a final exam
or homework grades, you will be evaluated on the basis of one outcome – did
your and your team’s work result in a viable software product that the client
can begin using to help improve his/her work experience?

Third, to achieve a successful result, you will be expected to work like a
software professional. That is, you should plan to educate yourself about a
variety of topics in programming, database development, and user interface
programming. The instructor will not spoon-feed any of this to you. In a
broader sense, this course provides you with an opportunity to really embrace
the idea of yourself as a “lifelong learner,” regardless of your future profession.

If you do enter the software field after graduation, you will quickly learn
that it evolves rapidly—new languages, new software methodologies, and (es-
pecially) new applications will appear throughout your professional lifetime.
To stay at the forefront of the field, you will learn most of what you need to
learn on-the-job, and much of this knowledge does not even exist today! So
life-long learning is a key element of survival in the software field.

1.6.3 To the Client
You are about to take part in a project that will develop new software for
your organization. When completed, this software will help improve one of
your organization’s mission-critical activities. Your role in this project is to
participate in regular meetings with student developers and provide them with
critical feedback on the quality of their progress at each stage of the project.
Your time commitment for this work may be 1-2 hours per week.

Before the project begins, you will work with the instructor to help him/her
understand your organization’s software need and compile a “requirements
document” that the developers will use as guidance for developing the software
to fulfill that need. For more concrete guidance about what to expect from
this initial step, please take a look at Chapter 3.

Soon after the project begins, and every 1-2 weeks thereafter, the devel-
opers will provide you with a new working prototype of your software. Each
time you exercise it, you will see new features that you can test, evaluate, and
make suggestions for improvements. Later in the project, as you encounter
issues with the software, you will be able to post them on the project’s “issues
board” so that the developers can address them in a timely manner. For more
guidance on what to expect during this central stage of the project, please
take a look at the “Client Review” sections of Chapters 5 through 7.

Especially important to the success of this software is your feedback on
the quality and ease of use for the features introduced in Chapter 7. Toward
the end of the project, your constructive suggestions on the “user help” pages
and other documentation (see Chapters 7) will also be very important.

The Journey ■ 33

1.6.4 To the Developer
You are about to receive a newly-developed software product to install on
the client’s server or web site. You should expect to receive the source code,
database, and all documentation from the instructor as a complete package.

You should test the software for robustness and work with the instructor
to fix any new issues you discover before installing it on the client’s server.
After installing the software, you should expect to provide ongoing support
as new issues arise, especially during the first few weeks of active use by the
client. For more guidance on interfacing with the instructor and the client and
deploying the product, please take a look at Chapter 9.

In some CO-FOSS projects, a professional developer like yourself has been
involved much earlier in the project, assisting the instructor and client with
project requirements and/or meeting regularly with the student team to pro-
vide professional advice on various technical challenges of the project as they
occur. For example, this approach was taken successfully in 2016 by an instruc-
tor at Green River College whose students developed software with continuing
support and mentoring from a professional developer (for more information,
see https://npfi.org/the-2016-npfi-grant-award/).

You may see other benefits from your joining the project earlier than the
time when the instructor hands you the final product for deployment on the
client’s server. For example, you may want to brush up your own skills with
client-centered development using platforms and tools you haven’t used before.
Or else you may want to engage actively with the class as an indirect recruiting
tool for your own company. Or you may simply want to give back to your
community in a way that utilizes your technical skills more directly than
what you do in your “day job.”

Whatever your motivation, you should talk with the instructor about en-
gaging more actively in the project and work out an arrangement that works
for both of you. Once you make such an arrangement, you can use the rest
of this book as a resource guide for working alongside the student developers,
selecting from among Chapters 4 through 7 the ones that are appropriate to
your needs.

Finally, we should mention that the Non-Profit FOSS Institute (NPFI)
exists solely to provide pro bono support for instructors, clients, and developers
who would like to start a new CO-FOSS project or get involved with a current
one. Many aspects of NPFI support are mentioned throughout this book. For
information about a particular current or future project that interests you,
please feel free to contact NPFI at https://npfi.org/contact/.

1.7 SUMMARY
This chapter introduces the larger ideas behind software development, fo-
cussing on a model for open source development which we call CO-FOSS.
This model is particularly suitable for inclusion in a course where students

https://npfi.org/the-2016-npfi-grant-award/
https://npfi.org/contact/
https://npfi.org/contact/

34 ■ Client-Centered Software Development: The CO-FOSS Approach

gain real-world experience developing a new software product for a local client.
Software architectures, frameworks, and licensing are presented with a partic-
ular focus on their influence on open source development.

The distinctions between a new CO-FOSS product and the mature FOSS
products that students will encounter if they enter the software profession
after graduation are also presented. After all, most mature FOSS products
are the result of incubation from earlier CO-FOSS projects.

This chapter concludes with some advice to the instructor, the student,
the client, and the professional developer on how to best use the material in
the remainder of the book.

1.8 MILESTONE 1
1. If you are an instructor, what are the risks and rewards for your launch-

ing a new CO-FOSS project with a student team?

2. If you are a student, what did you learn that you did not already know
about the software world or the process of software development?

3. If you are a non-profit representative, what critical operations in your
organization would be well-served by the addition of new customized
free and open source software?

4. If you are a professional software developer, how would engaging in a
new CO-FOSS project improve your resume or your personal well-being?

Bibliography

[1] http://en.wikipedia.org/wiki/capability˙maturity˙model˙integration.

[2] http://en.wikipedia.org/wiki/gnu˙general˙public˙license.

[3] http://en.wikipedia.org/wiki/linux˙kernel.

[4] https://en.wikipedia.org/wiki/unified˙modeling˙language.

[5] http://www.gnu.org/philosophy/free-sw.html.

[6] http://www.hostingadvice.com/how-to/nginx-vs-apache/.

[7] BBC. UK government backs open source. Online, February 2009.

[8] Grant Braught, John McCormick, James Bowring, Quinn Burke,
Barbara Cutler, David Goldschmidt, Mukkai Krishnamoorthy, Wesley
Turner, Steven Huss-Lederman, Bonnie MacKellar, and Allen Tucker. A
multi-institutional perspective on h/foss projects in the computing
curriculum. ACM Transactions on Computing Education, 18(2):1–31,
July 2018.

[9] Alistair Cockburn. Crystal Clear: A Human-Powered Methodology for
Small Teams. Addison-Wesley, 2005.

[10] E. F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387, June 1970.

[11] European Commission. Open innovation 2.0 conference, June.

[12] Festival Latinoamericano de Instalacion de Software Libre.
https://flisol.info/flisol2017.

[13] FLOSS Definition.
https://en.wikipedia.org/wiki/alternative˙terms˙for˙free˙software#floss.

[14] Free Software Foundation.
https://en.wikipedia.org/wiki/gnu˙general˙public˙license.

[15] Free Software Foundation. http://www.fsf.org/licensing/licenses/.

[16] Mozilla Foundation. http://www.mozilla.org/about/.

35

http://en.wikipedia.org/wiki/capability%CB%99maturity%CB%99model%CB%99integration
http://en.wikipedia.org/wiki/gnu%CB%99general%CB%99public%CB%99license
http://en.wikipedia.org/wiki/linux%CB%99kernel
https://en.wikipedia.org/wiki/unified%CB%99modeling%CB%99language
http://www.gnu.org/philosophy/free-sw.html
http://www.hostingadvice.com/how-to/nginx-vs-apache/
https://flisol.info/flisol2017
https://en.wikipedia.org/wiki/alternative%CB%99terms%CB%99for%CB%99free%CB%99software#floss
https://en.wikipedia.org/wiki/gnu%CB%99general%CB%99public%CB%99license
http://www.fsf.org/licensing/licenses/
http://www.mozilla.org/about/

36 ■ Bibliography

[17] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2000.

[18] GNU. http://www.gnu.org/gnu/initial-announcement.html.

[19] Standish Group. https://www.infoq.com/articles/standish-chaos-2015.

[20] Jim Hamerly, Tom Paquin, and Susan Walton. Freeing the source: The
story of mozilla. Open Sources: Voices from the Open Source, pages
197–206, 1999.

[21] Gijs Hillenius. Amsterdam to make openoffice and firefox default on
city desktops. Online, April 2009.

[22] Gijs Hillenius. Fr: Gendarmerie saves millions with open desktop and
web applications. Online, 2009.

[23] Chris Jensen and Walt Scacchi. Governance in open source software
development projects. In Pär gerfalk, Cornelia Boldyreff, Jesus M.
Gonzalez-Barahona, Gregory R. Madey, and John Noll, editors, Open
Source Software: New Horizons, volume 319, pages 130–142, Heidelberg,
May 2010. Springer.

[24] Android License. https://source.android.com/source/licenses.

[25] Bonnie MacKellar, Mihaela Sabin, and Allen Tucker. Bridging the
academia-industry gap in software engineering: A client-oriented open
source software projects course, pages 373–394. IGI Global, 2014.

[26] Netcraft. https://news.netcraft.com/archives/2018/01/19/january-
2018-web-server-survey.html.

[27] OSI. http://www.opensource.org/licenses.

[28] Bruce Perens. http://slashdot.org/articles/99/02/18/0927202.shtml.

[29] Bruce Perens. Open sources: Voices from the open source revolution.
The Open Source Initiative, pages 171–188, 1999.

[30] Federal Source Code Policy. https://sourcecode.cio.gov/#fn17.

[31] The Humanitarian FOSS Project. http://hfoss.org/.

[32] Peter H. Salus. The Daemon, the Gnu, and the Penguin: How free and
open source software is changing the world. Reed Media Services, 2008.

[33] Desktop Browser Market Share. https://www.netmarketshare.com/.

[34] Red Hat Linux Market Share.
https://www.gartner.com/doc/reprints?ct=150106&id=1-
26vhvsw&st=sb.

http://www.gnu.org/gnu/initial-announcement.html
https://www.infoq.com/articles/standish-chaos-2015
https://source.android.com/source/licenses
https://news.netcraft.com/archives/2018/01/19/january-2018-web-server-survey.html
https://news.netcraft.com/archives/2018/01/19/january-2018-web-server-survey.html
http://www.opensource.org/licenses
http://slashdot.org/articles/99/02/18/0927202.shtml
https://sourcecode.cio.gov/#fn17
http://hfoss.org/
https://www.netmarketshare.com/
https://www.gartner.com/doc/reprints?ct=150106&id=1-26vhvsw&st=sb
https://www.gartner.com/doc/reprints?ct=150106&id=1-26vhvsw&st=sb

Bibliography ■ 37

[35] Sourceforge. https://sourceforge.net/projects/ampps/.

[36] Richard Stallman. http://www.gnu.org/gnu/manifesto.html.

[37] Richard Stallman.
http://www.gnu.org/philosophy/use-free-software.html.

[38] Richard Stallman. The GNU Operating System and the Free Software
Movement. O’Reilly, 1999.

[39] Richard Stallman. Why ‘open source’ misses the point of free software.
Communications of the Association for Computing Machinery,
52(6):31–33, June 2009.

[40] Zdnet Survey. http://www.zdnet.com/article/its-an-open-source-world-
78-percent-of-companies-run-open-source-software/.

[41] Jenifer Tidwell. Designing Interfaces 2e: Patterns for Effective
Interaction Design. O’Reilly, 2010.

[42] Linus Torvalds. The Linux Edge. O’Reilly, 1999.

[43] Allen Tucker, Ralph Morelli, and Chamindra de Silva. Software
Development: An Open Source Approach. CRC Press, Boca Raton,
Florida, 2011.

[44] David A. Wheeler.
http://www.dwheeler.com/essays/floss-license-slide.html.

[45] Robert Young. Giving it away: How red hat software stumbled across a
new economic model and helped improve an industry. Open Sources:
Voices from the Open Source Revolution, pages 113–126, 1999.

https://sourceforge.net/projects/ampps/
http://www.gnu.org/gnu/manifesto.html
http://www.gnu.org/philosophy/use-free-software.html
http://www.zdnet.com/article/its-an-open-source-world-78-percent-of-companies-run-open-source-software/
http://www.zdnet.com/article/its-an-open-source-world-78-percent-of-companies-run-open-source-software/
http://www.dwheeler.com/essays/floss-license-slide.html

	Half Title�����������������
	Title Page�����������������
	Copyright Page���������������������
	Dedication�����������������
	Contents���������������
	List of Figures����������������������
	List of Tables���������������������
	Foreword���������������
	Preface��������������
	Acknowledgments����������������������
	About the Author�����������������������
	The Journey������������������
	Chapter 1: The Journey�����������������������������
	1.1 SOFTWARE�������������������
	1.2 SOFTWARE DEVELOPMENT MODELS��������������������������������������
	1.2.1 Serial Development�������������������������������
	1.2.2 Agile Development������������������������������
	1.2.3 CO-FOSS Development��������������������������������
	1.2.4 Software Customization: A Continuum��
	Custom Software����������������������
	Off-the-Shelf Software�����������������������������
	Custom Software with Off-the-Shelf Components��

	1.3 SOFTWARE LICENSING�����������������������������
	1.3.1 Proprietary Licensing����������������������������������
	1.3.2 Open Source Licensing����������������������������������
	1.3.3 FOSS Origins and Impact������������������������������������
	FOSS Worldwide���������������������
	Terminology: OSS, FOSS, FLOSS, H/FOSS, and CO-FOSS���

	1.4 SOFTWARE ARCHITECTURES���������������������������������
	1.4.1 Software Frameworks��������������������������������
	1.4.2 Web Servers and Bundles������������������������������������

	1.5 NEW VS MATURE OPEN SOURCE PROJECTS���
	1.5.1 Maturity Assessment��������������������������������
	1.5.2 Incubation�����������������������
	Community����������������
	Bug Tracking�������������������

	1.6 INTO THE WEEDS�������������������������
	1.6.1 To the Instructor������������������������������
	1.6.2 To the Student���������������������������
	1.6.3 To the Client��������������������������
	1.6.4 To the Developer�����������������������������

	1.7 SUMMARY������������������
	1.8 MILESTONE 1����������������������

	Bibliography�������������������

